Fields of values of odd-degree irreducible characters
Abstract In this paper we clarify the quadratic irrationalities that can be admitted by an odd-degree complex irreducible character χ of an arbitrary finite group. Write Q ( χ ) to denote the field generated over the rational numbers by the values of χ, and let d > 1 be a square-free integer. We prove that if Q ( χ ) = Q ( d ) then d ≡ 1 (mod 4) and if Q ( χ ) = Q ( − d ) , then d ≡ 3 (mod 4). This follows from the main result of this paper: either i ∈ Q ( χ ) or Q ( χ ) ⊆ Q ( exp ( 2 π i / m ) ) for some odd integer m ≥ 1 .