6533b86cfe1ef96bd12c815e

RESEARCH PRODUCT

Fields of values of odd-degree irreducible characters

Pham Huu TiepI. M. IsaacsGabriel NavarroMartin W. Liebeck

subject

Rational numberFinite groupCharacter valuesScience & TechnologyDegree (graph theory)General Mathematics010102 general mathematicsField (mathematics)Rationality01 natural sciencesREPRESENTATIONS0101 Pure MathematicsCombinatoricsQuadratic equationCharacter (mathematics)Integer0103 physical sciencesPhysical Sciences010307 mathematical physics0101 mathematicsMathematicsMathematics

description

Abstract In this paper we clarify the quadratic irrationalities that can be admitted by an odd-degree complex irreducible character χ of an arbitrary finite group. Write Q ( χ ) to denote the field generated over the rational numbers by the values of χ, and let d > 1 be a square-free integer. We prove that if Q ( χ ) = Q ( d ) then d ≡ 1 (mod 4) and if Q ( χ ) = Q ( − d ) , then d ≡ 3 (mod 4). This follows from the main result of this paper: either i ∈ Q ( χ ) or Q ( χ ) ⊆ Q ( exp ⁡ ( 2 π i / m ) ) for some odd integer m ≥ 1 .

10.1016/j.aim.2019.106757http://hdl.handle.net/10044/1/72229