0000000000121666
AUTHOR
Pham Huu Tiep
Character restrictions and multiplicities in symmetric groups
Abstract We give natural correspondences of odd-degree characters of the symmetric groups and some of their subgroups, which can be described easily by restriction of characters, degrees and multiplicities.
Characters of relative p'-degree over normal subgroups
Let Z be a normal subgroup of a finite group G , let ??Irr(Z) be an irreducible complex character of Z , and let p be a prime number. If p does not divide the integers ?(1)/?(1) for all ??Irr(G) lying over ? , then we prove that the Sylow p -subgroups of G/Z are abelian. This theorem, which generalizes the Gluck-Wolf Theorem to arbitrary finite groups, is one of the principal obstacles to proving the celebrated Brauer Height Zero Conjecture
Brauer characters with cyclotomic field of values
It has been shown in an earlier paper [G. Navarro, Pham Huu Tiep, Rational Brauer characters, Math. Ann. 335 (2006) 675–686] that, for any odd prime p, every finite group of even order has a non-trivial rational-valued irreducible p-Brauer character. For p=2 this statement is no longer true. In this paper we determine the possible non-abelian composition factors of finite groups without non-trivial rational-valued irreducible 2-Brauer characters. We also prove that, if p≠q are primes, then any finite group of order divisible by q has a non-trivial irreducible p-Brauer character with values in the cyclotomic field Q(exp(2πi/q)).
Non-vanishing elements of finite groups
AbstractLet G be a finite group, and let Irr(G) denote the set of irreducible complex characters of G. An element x of G is non-vanishing if, for every χ in Irr(G), we have χ(x)≠0. We prove that, if x is a non-vanishing element of G and the order of x is coprime to 6, then x lies in the Fitting subgroup of G.
McKay natural correspondences on characters
Let [math] be a finite group, let [math] be an odd prime, and let [math] . If [math] , then there is a canonical correspondence between the irreducible complex characters of [math] of degree not divisible by [math] belonging to the principal block of [math] and the linear characters of [math] . As a consequence, we give a characterization of finite groups that possess a self-normalizing Sylow [math] -subgroup or a [math] -decomposable Sylow normalizer.
𝑝-rational characters and self-normalizing Sylow 𝑝-subgroups
Let G G be a finite group, p p a prime, and P P a Sylow p p -subgroup of G G . Several recent refinements of the McKay conjecture suggest that there should exist a bijection between the irreducible characters of p ′ p’ -degree of G G and the irreducible characters of p ′ p’ -degree of N G ( P ) \mathbf {N}_G(P) , which preserves field of values of correspondent characters (over the p p -adics). This strengthening of the McKay conjecture has several consequences. In this paper we prove one of these consequences: If p > 2 p>2 , then G G has no non-trivial p ′ p’ -degree p p -rational irreducible characters if and only if N G ( P ) = P \mathbf {N}_G(P)=P .
Real groups and Sylow 2-subgroups
Abstract If G is a finite real group and P ∈ Syl 2 ( G ) , then P / P ′ is elementary abelian. This confirms a conjecture of Roderick Gow. In fact, we prove a much stronger result that implies Gow's conjecture.
Real class sizes and real character degrees
Perhaps unexpectedly, there is a rich and deep connection between field of values of characters, their degrees and the structure of a finite group. Some of the fundamental results on the degrees of characters of finite groups, as the Ito–Michler and Thompson's theorems, admit a version involving only characters with certain fixed field of values ([DNT, NS, NST2, NT1, NT3]).
Nilpotent and abelian Hall subgroups in finite groups
[EN] We give a characterization of the finite groups having nilpotent or abelian Hall pi-subgroups that can easily be verified using the character table.
Prime divisors of character degrees
On the Navarro–Willems conjecture for blocks of finite groups
Abstract We prove that a set of characters of a finite group can only be the set of characters for principal blocks of the group at two different primes when the primes do not divide the group order. This confirms a conjecture of Navarro and Willems in the case of principal blocks.
On p-Brauer characters of p′-degree and self-normalizing Sylow p-subgroups
Brauer's height zero conjecture for the 2-blocks of maximal defect
Finite Groups with Odd Sylow Normalizers
We determine the non-abelian composition factors of the finite groups with Sylow normalizers of odd order. As a consequence, among others, we prove the McKay conjecture and the Alperin weight conjecture for these groups.
p-parts of character degrees
Rational irreducible characters and rational conjugacy classes in finite groups
We prove that a finite group G G has two rational-valued irreducible characters if and only if it has two rational conjugacy classes, and determine the structure of any such group. Along the way we also prove a conjecture of Gow stating that any finite group of even order has a non-trivial rational-valued irreducible character of odd degree.
Characters and Sylow 2-subgroups of maximal class revisited
Abstract We give two ways to distinguish from the character table of a finite group G if a Sylow 2-subgroup of G has maximal class. We also characterize finite groups with Sylow 3-subgroups of order 3 in terms of their principal 3-block.
Brauer correspondent blocks with one simple module
One of the main problems in representation theory is to understand the exact relationship between Brauer corresponding blocks of finite groups. The case where the local correspondent has a unique simple module seems key. We characterize this situation for the principal p-blocks where p is odd.
Restriction of odd degree characters and natural correspondences
Let $q$ be an odd prime power, $n > 1$, and let $P$ denote a maximal parabolic subgroup of $GL_n(q)$ with Levi subgroup $GL_{n-1}(q) \times GL_1(q)$. We restrict the odd-degree irreducible characters of $GL_n(q)$ to $P$ to discover a natural correspondence of characters, both for $GL_n(q)$ and $SL_n(q)$. A similar result is established for certain finite groups with self-normalizing Sylow $p$-subgroups. We also construct a canonical bijection between the odd-degree irreducible characters of $S_n$ and those of $M$, where $M$ is any maximal subgroup of $S_n$ of odd index; as well as between the odd-degree irreducible characters of $G = GL_n(q)$ or $GU_n(q)$ with $q$ odd and those of $N_{G}…
Groups with two real Brauer characters
Irreducible induction and nilpotent subgroups in finite groups
Suppose that $G$ is a finite group and $H$ is a nilpotent subgroup of $G$. If a character of $H$ induces an irreducible character of $G$, then the generalized Fitting subgroup of $G$ is nilpotent.
On irreducible products of characters
Abstract We study the problem when the product of two non-linear Galois conjugate characters of a finite group is irreducible. We also prove new results on irreducible tensor products of cross-characteristic Brauer characters of quasisimple groups of Lie type.
On Real and Rational Characters in Blocks
Abstract The principal $p$-block of a finite group $G$ contains only one real-valued irreducible ordinary character exactly when $G/{{\bf O}_{p'}(G)}$ has odd order. For $p \ne 3$, the same happens with rational-valued characters. We also prove an analogue for $p$-Brauer characters with $p \geq 3$.
Characters of 𝑝’-degree with cyclotomic field of values
If p p is a prime number and G G is a finite group, we show that G G has an irreducible complex character of degree not divisible by p p with values in the cyclotomic field Q p \mathbb {Q}_p .
Degrees of rational characters of finite groups
Abstract A classical theorem of John Thompson on character degrees states that if the degree of any complex irreducible character of a finite group G is 1 or divisible by a prime p, then G has a normal p-complement. In this paper, we consider fields of values of characters and prove some improvements of this result.
Decomposition numbers and local properties
Abstract If G is a finite group and p is a prime, we give evidence that the p-decomposition matrix encodes properties of p-Sylow normalizers.
On fully ramified Brauer characters
Let Z be a normal subgroup of a finite group, let p≠5 be a prime and let λ∈IBr(Z) be an irreducible G-invariant p-Brauer character of Z. Suppose that λG=eφ for some φ∈IBr(G). Then G/Z is solvable. In other words, a twisted group algebra over an algebraically closed field of characteristic not 5 with a unique class of simple modules comes from a solvable group.
Sylow subgroups, exponents, and character values
If G G is a finite group, p p is a prime, and P P is a Sylow p p -subgroup of G G , we study how the exponent of the abelian group P / P ′ P/P’ is affected and how it affects the values of the complex characters of G G . This is related to Brauer’s Problem 12 12 . Exactly how this is done is one of the last unsolved consequences of the McKay–Galois conjecture.
Fields of values of odd-degree irreducible characters
Abstract In this paper we clarify the quadratic irrationalities that can be admitted by an odd-degree complex irreducible character χ of an arbitrary finite group. Write Q ( χ ) to denote the field generated over the rational numbers by the values of χ, and let d > 1 be a square-free integer. We prove that if Q ( χ ) = Q ( d ) then d ≡ 1 (mod 4) and if Q ( χ ) = Q ( − d ) , then d ≡ 3 (mod 4). This follows from the main result of this paper: either i ∈ Q ( χ ) or Q ( χ ) ⊆ Q ( exp ( 2 π i / m ) ) for some odd integer m ≥ 1 .
Order of products of elements in finite groups
If G is a finite group, p is a prime, and x∈G, it is an interesting problem to place x in a convenient small (normal) subgroup of G, assuming some knowledge of the order of the products xy, for certain p‐elements y of G.
Abelian Sylow subgroups in a finite group, II
Abstract Let p ≠ 3 , 5 be a prime. We prove that Sylow p-subgroups of a finite group G are abelian if and only if the class sizes of the p-elements of G are all coprime to p. This gives a solution to a problem posed by R. Brauer in 1956 (for p ≠ 3 , 5 ).
Coprime actions and correspondences of Brauer characters
We prove several results giving substantial evidence in support of the conjectural existence of a Glauberman–Isaacs bijection for Brauer characters under a coprime action. We also discuss related bijections for the McKay conjecture.
Irreducible characters of $3'$-degree of finite symmetric, general linear and unitary groups
Abstract Let G be a finite symmetric, general linear, or general unitary group defined over a field of characteristic coprime to 3. We construct a canonical correspondence between irreducible characters of degree coprime to 3 of G and those of N G ( P ) , where P is a Sylow 3-subgroup of G . Since our bijections commute with the action of the absolute Galois group over the rationals, we conclude that fields of values of character correspondents are the same.
p-Parts of Brauer character degrees
Abstract Let G be a finite group and let p be an odd prime. Under certain conditions on the p-parts of the degrees of its irreducible p-Brauer characters, we prove the solvability of G. As a consequence, we answer a question proposed by B. Huppert in 1991: If G has exactly two distinct irreducible p-Brauer character degrees, then is G solvable? We also determine the structure of non-solvable groups with exactly two irreducible 2-Brauer character degrees.