6533b86dfe1ef96bd12ca788

RESEARCH PRODUCT

Abelian Sylow subgroups in a finite group, II

Gabriel NavarroRonald SolomonPham Huu Tiep

subject

p-groupCombinatoricsMathematics::Group TheoryNormal p-complementAlgebra and Number TheoryLocally finite groupSylow theoremsCyclic groupElementary abelian groupOmega and agemo subgroupAbelian groupMathematics

description

Abstract Let p ≠ 3 , 5 be a prime. We prove that Sylow p-subgroups of a finite group G are abelian if and only if the class sizes of the p-elements of G are all coprime to p. This gives a solution to a problem posed by R. Brauer in 1956 (for p ≠ 3 , 5 ).

https://doi.org/10.1016/j.jalgebra.2014.08.012