0000000001173174

AUTHOR

Adrien Dubouloz

showing 19 related works from this author

Algebraic models of the Euclidean plane

2018

We introduce a new invariant, the real (logarithmic)-Kodaira dimension, that allows to distinguish smooth real algebraic surfaces up to birational diffeomorphism. As an application, we construct infinite families of smooth rational real algebraic surfaces with trivial homology groups, whose real loci are diffeomorphic to $\mathbb{R}^2$, but which are pairwise not birationally diffeomorphic. There are thus infinitely many non-trivial models of the euclidean plane, contrary to the compact case.

Mathematics - Differential GeometryPure mathematicsaffine complexificationLogarithmReal algebraic model01 natural sciencesMathematics - Algebraic GeometryMathematics::Algebraic Geometry0103 physical sciencesEuclidean geometryAlgebraic surfaceaffine surfaceFOS: Mathematics0101 mathematicsInvariant (mathematics)Algebraic numberMathematics::Symplectic GeometryAlgebraic Geometry (math.AG)MathematicsAlgebra and Number Theory010102 general mathematics[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG]q-homology planesbirational diffeomorphismDifferential Geometry (math.DG)[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]rational fibrationPairwise comparison010307 mathematical physicsGeometry and TopologyDiffeomorphism[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]14R05 14R25 14E05 14P25 14J26[MATH.MATH-DG] Mathematics [math]/Differential Geometry [math.DG]Singular homology
researchProduct

Equivariant Triviality of Quasi-Monomial Triangular $$\mathbb{G}_{a}$$-Actions on $$\mathbb{A}^{4}$$

2014

We give a direct and self-contained proof of the fact that additive group actions on affine four-space generated by certain types of triangular derivations are translations whenever they are proper. The argument, which is based on explicit techniques, provides an illustration of the difficulties encountered and an introduction to the more abstract methods which were used recently by the authors to solve the general triangular case.

Discrete mathematicsMonomialPure mathematicsArgumentEquivariant mapAffine transformationTrivialityMathematicsAdditive group
researchProduct

Automorphisms of $mathbb{A}^{1}$-fibered affine surfaces

2011

We develop technics of birational geometry to study automorphisms of affine surfaces admitting many distinct rational fibrations, with a particular focus on the interactions between automorphisms and these fibrations. In particular, we associate to each surface S of this type a graph encoding equivalence classes of rational fibrations from which it is possible to decide for instance if the automorphism group of S is generated by automorphisms preserving these fibrations.

Surface (mathematics)Graph encodingPure mathematicsApplied MathematicsGeneral MathematicsFibered knotBirational geometryType (model theory)AutomorphismMathematics::Algebraic TopologyMathematics::Group TheoryMathematics::Algebraic GeometryAffine transformationddc:510Focus (optics)Mathematics::Symplectic GeometryMathematics
researchProduct

On exotic affine 3-spheres

2014

Every A 1 \mathbb {A}^{1} -bundle over A ∗ 2 , \mathbb {A}_{\ast }^{2}, the complex affine plane punctured at the origin, is trivial in the differentiable category, but there are infinitely many distinct isomorphy classes of algebraic bundles. Isomorphy types of total spaces of such algebraic bundles are considered; in particular, the complex affine 3 3 -sphere S C 3 , \mathbb {S}_{\mathbb {C}}^{3}, given by z 1 2 + z 2 2 + z 3 2 + z 4 2 = 1 , z_{1}^{2}+z_{2}^{2}+z_{3}^{2}+z_{4}^{2}=1, admits such a structure with an additional homogeneity property. Total spaces of nontrivial homogeneous A 1 \mathbb {A}^{1} -bundles over A ∗ 2 \mathbb {A}_{\ast }^{2} are classified up to G m \mathbb {G}_{m}…

Pure mathematicsAlgebra and Number TheoryHomogeneousSPHERESGeometry and TopologyIsomorphismAffine transformationDifferentiable functionAlgebraic numberInvariant (mathematics)Exotic sphereMathematicsJournal of Algebraic Geometry
researchProduct

Noncancellation for contractible affine threefolds

2011

We construct two nonisomorphic contractible affine threefolds X X and Y Y with the property that their cylinders X × A 1 X\times \mathbb {A}^{1} and Y × A 1 Y\times \mathbb {A}^{1} are isomorphic, showing that the generalized Cancellation Problem has a negative answer in general for contractible affine threefolds. We also establish that X X and Y Y are actually biholomorphic as complex analytic varieties, providing the first example of a pair of biholomorphic but not isomorphic exotic A 3 \mathbb {A}^{3} ’s.

Pure mathematicsApplied MathematicsGeneral Mathematics010102 general mathematics0103 physical sciences010307 mathematical physicsAffine transformation0101 mathematics01 natural sciencesContractible spaceMathematicsProc. Amer. Math. Soc.
researchProduct

Proper triangular Ga-actions on A^4 are translations

2013

We describe the structure of geometric quotients for proper locally triangulable additve group actions on locally trivial A^3-bundles over a noetherian normal base scheme X defined over a field of characteristic 0. In the case where dim X=1, we show in particular that every such action is a translation with geometric quotient isomorphic to the total space of a vector bundle of rank 2 over X. As a consequence, every proper triangulable Ga-action on the affine four space A^4 over a field of characteristic 0 is a translation with geometric quotient isomorphic to A^3.

Algebraaffine spacesMathematics - Algebraic GeometryAlgebra and Number Theorygeometric quotientFOS: Mathematics14L30; 14R20; 14R25[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]Algebraic Geometry (math.AG)proper additive group actionsMathematics[ MATH.MATH-AG ] Mathematics [math]/Algebraic Geometry [math.AG]
researchProduct

Locally tame plane polynomial automorphisms

2010

Abstract For automorphisms of a polynomial ring in two variables over a domain R , we show that local tameness implies global tameness provided that every 2-generated locally free R -module of rank 1 is free. We give examples illustrating this property.

PolynomialRank (linear algebra)Polynomial ringPolynomial automorphismsCommutative Algebra (math.AC)01 natural sciencesCombinatoricsMathematics - Algebraic GeometryFOS: MathematicsAlgebra en Topologie0101 mathematicsAlgebraic Geometry (math.AG)MathematicsAlgebra and TopologyAlgebra and Number TheoryPlane (geometry)local tameness010102 general mathematicsA domainMathematics - Commutative AlgebraAutomorphism[ MATH.MATH-AG ] Mathematics [math]/Algebraic Geometry [math.AG]010101 applied mathematicsComputingMethodologies_DOCUMENTANDTEXTPROCESSING[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]14R10Journal of Pure and Applied Algebra
researchProduct

Proper twin-triangular $\mathbb {G}_{a}$-actions on $\mathbb {A}^{4}$ are translations

2014

Applied MathematicsGeneral MathematicsMathematicsProceedings of the American Mathematical Society
researchProduct

Automorphism Groups of Certain Rational Hypersurfaces in Complex Four-Space

2014

The Russell cubic is a smooth contractible affine complex threefold which is not isomorphic to affine three-space. In previous articles, we discussed the structure of the automorphism group of this variety. Here we review some consequences of this structure and generalize some results to other hypersurfaces which arise as deformations of Koras–Russell threefolds.

Automorphism groupPure mathematics010102 general mathematicsStructure (category theory)Space (mathematics)Automorphism01 natural sciencesContractible spaceAlgebraMathematics::Algebraic GeometryAffine representation0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010307 mathematical physicsAffine transformation0101 mathematicsVariety (universal algebra)Mathematics
researchProduct

𝔸1-contractibility of affine modifications

2019

We introduce Koras–Russell fiber bundles over algebraically closed fields of characteristic zero. After a single suspension, this exhibits an infinite family of smooth affine [Formula: see text]-contractible [Formula: see text]-folds. Moreover, we give examples of stably [Formula: see text]-contractible smooth affine [Formula: see text]-folds containing a Brieskorn–Pham surface, and a family of smooth affine [Formula: see text]-folds with a higher-dimensional [Formula: see text]-contractible total space.

Pure mathematicsComputer Science::Information RetrievalGeneral Mathematics010102 general mathematicsAstrophysics::Instrumentation and Methods for AstrophysicsZero (complex analysis)Computer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)01 natural sciencesSuspension (topology)Motivic cohomology0103 physical sciencesComputer Science::General LiteratureFiber bundle010307 mathematical physicsAffine transformation0101 mathematicsAlgebraically closed fieldMathematicsInternational Journal of Mathematics
researchProduct

Rationally integrable vector fields and rational additive group actions

2016

International audience; We characterize rational actions of the additive group on algebraic varieties defined over a field of characteristic zero in terms of a suitable integrability property of their associated velocity vector fields. This extends the classical correspondence between regular actions of the additive group on affine algebraic varieties and the so-called locally nilpotent derivations of their coordinate rings. Our results lead in particular to a complete characterization of regular additive group actions on semi-affine varieties in terms of their associated vector fields. Among other applications, we review properties of the rational counterpart of the Makar-Limanov invariant…

Integrable systemRationally integrable derivationsGeneral Mathematics010102 general mathematics05 social sciencesLocally nilpotentAlgebraic variety01 natural sciencesLocally nilpotent derivations[ MATH.MATH-AG ] Mathematics [math]/Algebraic Geometry [math.AG]AlgebraHomogeneousRational additive group actions0502 economics and businessVector fieldAffine transformation[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]050207 economics0101 mathematicsInvariant (mathematics)MSC: 14E07 14L30 14M25 14R20Additive groupMathematics
researchProduct

Affine Surfaces With a Huge Group of Automorphisms

2013

We describe a family of rational affine surfaces S with huge groups of automorphisms in the following sense: the normal subgroup Aut(S)alg of Aut(S) generated by all algebraic subgroups of Aut(S) is not generated by any countable family of such subgroups, and the quotient Aut(S)/Aut(S)alg cointains a free group over an uncountable set of generators.

Normal subgrouprational fibrationsautomorphismsGroup (mathematics)General Mathematics010102 general mathematicsAutomorphism01 natural sciences[ MATH.MATH-AG ] Mathematics [math]/Algebraic Geometry [math.AG]CombinatoricsMathematics::LogicMathematics - Algebraic GeometryMathematics::Group Theory0103 physical sciencesFree groupCountable setUncountable set[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]010307 mathematical physics0101 mathematicsAlgebraic number14R25 14R20 14R05 14E05affine surfacesQuotientMathematicsInternational Mathematics Research Notices
researchProduct

Voisinages tubulaires épointés et homotopie stable à l'infini

2022

We initiate a study of punctured tubular neighborhoods and homotopy theory at infinity in motivic settings. We use the six functors formalism to give an intrinsic definition of the stable motivic homotopy type at infinity of an algebraic variety. Our main computational tools include cdh-descent for normal crossing divisors, Euler classes, Gysin maps, and homotopy purity. Under-adic realization, the motive at infinity recovers a formula for vanishing cycles due to Rapoport-Zink; similar results hold for Steenbrink's limiting Hodge structures and Wildeshaus' boundary motives. Under the topological Betti realization, the stable motivic homotopy type at infinity of an algebraic variety recovers…

links of singularities[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG]Motivic homotopy theorypunctured tubular neighborhoods[MATH.MATH-AT] Mathematics [math]/Algebraic Topology [math.AT]stable homotopy at infinityMathematics::Algebraic TopologyMathematics - Algebraic Geometrylinks of singularities.Mathematics::Algebraic Geometryquadratic invariantsMathematics::K-Theory and HomologyFOS: MathematicsAlgebraic Topology (math.AT)14F42 19E15 55P42 14F45 55P57Mathematics - Algebraic TopologyAlgebraic Geometry (math.AG)qua- dratic invariants
researchProduct

Toric G-solid Fano threefolds

2020

We study toric G-solid Fano threefolds that have at most terminal singularities, where G is an algebraic subgroup of the normalizer of a maximal torus in their automorphism groups.

Mathematics - Algebraic GeometryMathematics::Group TheoryMathematics::Algebraic GeometryGeneral Mathematics[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG]FOS: MathematicsGeneral Physics and Astronomy[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]Mathematics::Symplectic GeometryAlgebraic Geometry (math.AG)
researchProduct

Algebraic models of the real affine plane

2017

We introduce a new invariant, the real (logarithmic)-Kodaira dimension, that allows to distinguish smooth real algebraic surfaces up to birational diffeomorphism. As an application, we construct infinite families of smooth rational real algebraic surfaces with trivial homology groups, whose real loci are diffeomorphic to $\mathbb{R}^2$, but which are pairwise not birationally diffeomorphic. There are thus infinitely many non-trivial models of the real affine plane, contrary to the compact case.

birational diffeomorphismaffine complexificationMathematics::Algebraic Geometry14R05 14R25 14E05 14P25 14J26.affine surface[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG]rational fibrationReal algebraic model[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]Mathematics::Symplectic Geometry[ MATH.MATH-AG ] Mathematics [math]/Algebraic Geometry [math.AG]
researchProduct

Stable motivic homotopy theory at infinity

2021

In this paper, we initiate a study of motivic homotopy theory at infinity. We use the six functor formalism to give an intrinsic definition of the stable motivic homotopy type at infinity of an algebraic variety. Our main computational tools include cdh-descent for normal crossing divisors, Euler classes, Gysin maps, and homotopy purity. Under $\ell$-adic realization, the motive at infinity recovers a formula for vanishing cycles due to Rapoport-Zink; similar results hold for Steenbrink's limiting Hodge structures and Wildeshaus' boundary motives. Under the topological Betti realization, the stable motivic homotopy type at infinity of an algebraic variety recovers the singular complex at in…

[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG][MATH.MATH-AT] Mathematics [math]/Algebraic Topology [math.AT]Mathematics::Algebraic TopologyMathematics - Algebraic GeometryMathematics::Algebraic GeometryMathematics::K-Theory and Homology[MATH.MATH-AT]Mathematics [math]/Algebraic Topology [math.AT]Mathematics::Category TheoryFOS: MathematicsAlgebraic Topology (math.AT)[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]Mathematics - Algebraic TopologyPrimary: 14F42 19E15 55P42 Secondary: 14F45 55P57Algebraic Geometry (math.AG)
researchProduct

A survey on algebraic dilatations

2023

In this text, we wish to provide the reader with a short guide to recent works on the theory of dilatations in Commutative Algebra and Algebraic Geometry. These works fall naturally into two categories: one emphasises foundational and theoretical aspects and the other applications to existing theories.

torsorsaffine modificationsdifferential Galois groupsformal blowupsNéron blowups[MATH] Mathematics [math]Commutative Algebra (math.AC)shtukasMathematics - Algebraic Geometryaffine blowupsFOS: Mathematicsalgebraic dilatations[MATH]Mathematics [math]Algebraic Geometry (math.AG)multi-centered dilatationsdilatations of schemesA 1 -homotopy theoryKaliman-Zaidenberg modificationslevel structuresMoy-Prasad isomorphismrepresentations of p-adic groupsMathematics - Commutative Algebramono-centered dilatationslocalizations of ringscongruent isomorphismsTannakian groupsaffine geometry
researchProduct

$\mathbb{A}^1$-cylinders over smooth affine surfaces of negative Kodaira dimension

2019

International audience; The Zariski Cancellation problem for smooth affine surfaces asks whether two suchsurfaces whose products with the affine line are isomorphic are isomorphic themselves. Byresults of Iitaka-Fujita, the answer is positive for surfaces of non-negative Kodaira dimen-sion. By a characterization due to Miyanishi, surfaces of negative Kodaira dimension arefibered by the affine line, and by a celebrated result of Miyanishi-Sugie, the answer to theproblem is positive if one of the surfaces is the affine plane. On the other hand, exam-ples of non-isomorphicA1-fibered affine surfaces with isomorphicA1-cylinders were firstconstructed by Danielewski in 1989, and then by many other…

[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG][MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]
researchProduct

Rational quasi-projective surfaces with algebraic moduli of real forms

2022

We construct real rational quasi-projective surfaces with positive dimensional algebraic moduli of mutually non-isomorphic real forms.

[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG]
researchProduct