0000000001179235

AUTHOR

P. Paillet

showing 19 related works from this author

Origins of radiation-induced attenuation in pure-silica-core and Ge-doped optical fibers under pulsed x-ray irradiation

2020

We investigated the nature, optical properties, and decay kinetics of point defects causing large transient attenuation increase observed in silica-based optical fibers exposed to short duration and high-dose rate x-ray pulses. The transient radiation-induced attenuation (RIA) spectra of pure-silica-core (PSC), Ge-doped, F-doped, and Ge + F-doped optical fibers (OFs) were acquired after the ionizing pulse in the spectral range of [∼0.8–∼3.2] eV (∼1500–∼380 nm), from a few ms to several minutes after the pulse, at both room temperature (RT) and liquid nitrogen temperature (LNT). Comparing the fiber behavior at both temperatures better highlights the thermally unstable point defects contribut…

optical fiberMaterials scienceOptical fiberAnalytical chemistryGeneral Physics and Astronomy02 engineering and technologymedicine.disease_cause01 natural scienceslaw.inventionx-ray irradiationlaw0103 physical sciencesmedicinepoint defectsRadiation induced absorptionFiberAbsorption (electromagnetic radiation)ComputingMilieux_MISCELLANEOUS010302 applied physics[PHYS]Physics [physics]F dopingAttenuationDopingSettore FIS/01 - Fisica SperimentaleLiquid nitrogen021001 nanoscience & nanotechnologyCrystallographic defectGe doping0210 nano-technologyUltraviolet
researchProduct

Radiation effects on silica-based preforms and optical fibers-I: Experimental study with canonical samples

2008

International audience; Prototype samples of preforms and associated fibers have been designed and fabricated through MCVD process to investigate the role of fluorine (F) and germanium (Ge) doping elements on the radiation sensitivity of silica-based glasses. We characterized the behaviors of these canonical samples before, during and after 10 keV X-ray irradiation through several spectroscopic techniques, to obtain global information (in situ absorption measurements, electron paramagnetic resonance) or spatially-resolved information (confocal microscopy, absorption and luminescence on preform). These tests showed that, for the Ge-doped fiber and in the 300–900 nm range, the radiation-induc…

Nuclear and High Energy PhysicsOptical fiberMaterials scienceoptical fibersAnalytical chemistrychemistry.chemical_elementGermanium02 engineering and technologyconfocal microscopy01 natural sciencesSpectral linelaw.inventionAbsorptionX-rays.law0103 physical sciencesX-raysluminescencepoint defectsIrradiationFiberElectrical and Electronic EngineeringAbsorption (electromagnetic radiation)010302 applied physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]021001 nanoscience & nanotechnologyCrystallographic defectOptical fiber photosensitivity absorption luminescenceNuclear Energy and EngineeringchemistryEPR0210 nano-technologyLuminescence
researchProduct

Steady state γ-ray radiation effects on Brillouin fiber sensors

2015

International audience; Brillouin optical time-domain analysis (BOTDA) sensors offer remarkable advantages for the surveillance of the planned French deep geological radioactive wastes repository, called Cigéo1,2. In this work we study the performances of Brillouin distributed sensors in harsh environment. We evaluate the radiation tolerance of different sensor classes and their responses evolution during γ-ray exposition with 1kGy/h dose rate (to reach ~0.2MGy) and after 1, 3, 6 and 10 MGy accumulated doses. Measurements on strained Ge-doped SMF are reported to highlight the variation on Brillouin scattering proprieties, both intrinsic frequency position of Brillouin shift and its dependen…

Optical fiberStrain sensorOptical fiberMaterials scienceCondensed Matter PhysicRadiation7. Clean energyDistributed temperature sensorlaw.invention[SPI]Engineering Sciences [physics]OpticslawBrillouin scatteringFiberElectrical and Electronic EngineeringSteady statebusiness.industryScatteringElectronic Optical and Magnetic MaterialComputer Science Applications1707 Computer Vision and Pattern RecognitionApplied MathematicBrillouin zoneGamma radiationFiber optic sensorOptoelectronicsbusinessBrillouin scatteringBotdaRadiactive wasteSPIE Proceedings
researchProduct

Hydrogen and radiation induced effects on performances of Raman fiber-based temperature sensors

2014

International audience; Raman Distributed Temperature Sensors (RDTS) offer exceptional advantages for the monitoring of the envisioned French deep geological repository for nuclear wastes, called Cigéo. Here, we present experimental studies on how the performances of RDTS evolve in harsh environments like those associated with H2 or g-rays. Both of them are shown to strongly affect the temperature measurements made with RDTS. We showed that by adapting the characteristics of the used fiber for the sensing, we could limit its degradation but that additional hardening by system studies will have to be developed before integration of RDTS in Cigéo.

Optical fiberMaterials scienceHydrogenbusiness.industrychemistry.chemical_elementRadiation inducedTemperature measurementlaw.invention[SPI]Engineering Sciences [physics]symbols.namesakeRaman spectroscopy distributed temperature sensor optical fibers hydrogen loading radiation nuclear wastechemistrylawsymbolsOptoelectronicsFiberbusinessRaman spectroscopyHardening (computing)SPIE Proceedings
researchProduct

Raman based distributed fiber optic temperature sensors for structural health monitoring in radiation environment

2015

Raman distributed temperature sensor (RDTS) measurements were performed during γ-radiation on three different classes of standard multimode fibers (pure, Ge-doped and F-doped). The sensor response is affected by the radiation induced attenuation phenomena leading to errors in the temperature measurements. The amplitude of this error strongly depends on the fiber type and the irradiation conditions. These results are promising in view of the integration of these RDTS into the deep geological repository for radioactive waste.

Optical fiberMulti-mode optical fiberMaterials scienceOptical fiberRadiationbusiness.industryAttenuationDistributed sensorRadiationTemperature measurementlaw.inventionsymbols.namesakeOpticsMGylawFiber optic sensorsymbolsOptoelectronicsIrradiationStructural health monitoringElectrical and Electronic EngineeringbusinessRaman spectroscopyRadiation-induced attenuationRaman
researchProduct

Combined High Dose and Temperature Radiation Effects on Multimode Silica-Based Optical Fibers

2013

International audience; We investigate the response of Ge-doped, P-doped, pure-silica, or Fluorine-doped fibers to extreme environments combining doses up to MGy(SiO $_{{{2}}}$) level of 10 keV X-rays and temperatures between 25 C and 300 C . First, we evaluate their potential to serve either as parts of radiation tolerant optical or optoelectronic systems or at the opposite, for the most sensitive ones, as punctual or distributed dosimeters. Second, we improve our knowledge on combined ionizing radiations and temperature (R&T) effects on radiation-induced attenuation (RIA) by measuring the RIA spectra in the ultraviolet and visible domains varying the R&T conditions. Our results reveal the…

Nuclear and High Energy PhysicsOptical fiberMaterials science02 engineering and technologyRadiationmedicine.disease_cause01 natural sciencesElectromagnetic radiationlaw.inventionIonizing radiation010309 opticslaw0103 physical sciencesmedicineIrradiationElectrical and Electronic EngineeringDosimeterbusiness.industryAttenuationIRRADIATION EFFECTSSettore FIS/01 - Fisica Sperimentale021001 nanoscience & nanotechnologyNuclear Energy and Engineering[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicOptoelectronics0210 nano-technologybusinessUltraviolet
researchProduct

Radiation effects on silica-based preforms and optical fibers-II: Coupling ab initio simulations and experiments

2008

International audience; Abstract—Experimental characterization through electron paramagnetic resonance (EPR) and confocal luminescence microscopy (CML) of a Ge-doped glass (preform and fiber) reveals the generation of several point defects by 10 keV X-ray radiation-induced attenuation: GeE', Ge(1), Ge(2), and Ge-ODC. The generation mechanisms of Ge-ODC and charged defects like GeE' centers are studied through ab initio simulation. Our calculations used a 108 atom supercell with a glass composition comparable to the Ge-doped core or to the pure-silica cladding of the canonical sample. The large size of our cell allows us to study the influence of the local environment surrounding the X-ODC d…

Nuclear and High Energy PhysicsMaterials scienceoptical fibersAb initio02 engineering and technology01 natural sciencesMolecular physicslaw.inventionlawAb initio quantum chemistry methods0103 physical sciencesAtomElectrical and Electronic Engineeringdensity functionalElectron paramagnetic resonancetheorydefects010302 applied physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]021001 nanoscience & nanotechnologyCrystallographic defectOptical fiber photosensitivity absorption luminescenceAmorphous solidBond lengthNuclear Energy and Engineeringsilicaradiation effectsAb initio calculationssilica.0210 nano-technologyLuminescence
researchProduct

On-Line Characterization of Gamma Radiation Effects on Single-Ended Raman Based Distributed Fiber Optic Sensor

2016

We report distributed temperature measurements based on Raman scattering performed during steady state $\gamma $ -ray irradiation at a dose rate of 1 kGy( ${\rm SiO}_{2}$ )/h and up to a total ionizing dose (TID) of $\sim 0.1\ \hbox{MGy}$ . We characterize on-line the evolution of the performances of a single-ended Raman distributed temperature sensor (RDTS) during the $\gamma $ -ray exposure of different classes of commercial multimode fibers (MMFs) acting as the sensing element. RDTS is influenced by the radiation-induced attenuation (RIA) phenomena leading to both large errors in the temperature measurements and a diminution of the useful sensing length. The amplitude of the radiation-in…

optical fiberNuclear and High Energy PhysicsOptical fiberMaterials scienceRadiation01 natural sciencesTemperature measurementlaw.invention010309 opticssymbols.namesakeOpticslaw0103 physical sciencesradiation-induced attenuationIrradiationElectrical and Electronic Engineeringraman scatteringNuclear and High Energy Physic[PHYS]Physics [physics]010308 nuclear & particles physicsbusiness.industryfiber sensorDistributed sensorradiationNuclear Energy and EngineeringFiber optic sensorAbsorbed dosesymbolsOptoelectronicsbusinessRaman spectroscopyRaman scatteringIEEE Transactions on Nuclear Science
researchProduct

Effect of irradiation temperature on the radiation induced attenuation of Ge-doped fibers

2016

International audience; The UV-visible radiation induced attenuation (RIA) was studied in Ge-doped optical fibers, during X-ray (10 keV) irradiations at different temperatures. By comparing the spectra recorded in dissimilarly irradiated samples we evidenced the impact of the irradiation temperature. In details, we highlighted that, from a certain dose, increasing the temperature the RIA decreases for wavelengths lower than 470 nm, whereas at higher wavelengths the RIA depends only on the dose. Such findings suggest that it is possible to distinguish the irradiation temperature by comparing the signal at two different wavelengths. From the microscopic point of view, it appears that the RIA …

[PHYS]Physics [physics]Optical fiberMaterials science010308 nuclear & particles physicsbusiness.industryAttenuationDopingAnalytical chemistry02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesTemperature measurementlaw.inventionWavelengthlaw0103 physical sciencesOptoelectronicsIrradiation0210 nano-technologybusinessAbsorption (electromagnetic radiation)Electron paramagnetic resonance
researchProduct

Transient Radiation Responses of Optical Fibers: Influence of MCVD Process Parameters

2012

International audience; A dedicated set of fibers elaborated via the Modified Chemical Vapor Deposition (MCVD) technique is used to study the influence of composition and drawing parameters on their responses to an X-ray pulse representative of the radiation environments associated with Megajoule class lasers. These canonical fibers were designed to highlight the impact of these parameters on the amplitude and kinetics of the transient pulsed X-ray Radiation Induced Attenuation (RIA) at room temperature. From preforms differing by their core composition, three optical fibers were elaborated by varying the tension and speed during the drawing process. No or only slight RIA change results fro…

Nuclear and High Energy PhysicsOptical fiberMaterials scienceoptical fibersMegajoule class lasersDrawing parameters MCVD Megajoule class lasers optical fibers radiation effects02 engineering and technologyChemical vapor deposition01 natural scienceslaw.inventionOpticslaw0103 physical sciencesTransient responseFiberDrawing parametersElectrical and Electronic EngineeringDopant010308 nuclear & particles physicsbusiness.industryAttenuation021001 nanoscience & nanotechnologyLaserCore (optical fiber)Nuclear Energy and Engineeringradiation effects[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicMCVD0210 nano-technologybusiness
researchProduct

Development of a Temperature Distributed Monitoring System Based On Raman Scattering in Harsh Environment

2014

Raman Distributed Temperature Sensors (RDTSs) offer exceptional advantages to monitor the envisioned French deep geological repository for nuclear wastes, called Cigeo. Both $\gamma $ -ray and hydrogen release from nuclear wastes can strongly affect the temperature measurements made with RDTS. We present experimental studies on how the performances of RDTS evolve in harsh environments like those associated with $\gamma $ -rays or combined radiations and ${{\rm H}_2}$ release. The response of two standard and one radiation tolerant multimode fibers (MMFs) are investigated. In all fibers the differential induced attenuation between Stokes and anti-Stokes signal, ${({{\alpha _{\rm AS}} - {\alp…

PhysicsNuclear and High Energy PhysicsMulti-mode optical fiberHydrogenbusiness.industryAttenuationchemistry.chemical_elementRadiationTemperature measurementsymbols.namesake[SPI]Engineering Sciences [physics]OpticsNuclear Energy and EngineeringchemistrysymbolsFiber optics Raman scattering temperature sensor radiationIrradiationElectrical and Electronic EngineeringAtomic physicsRaman spectroscopybusinessRaman scattering
researchProduct

Coupled theoretical and experimental studies for the radiation hardening of silica-based optical fibers

2014

International audience; We applied theoretical and experimental spectroscopy tools to ad hoc silica-based "canonical" samples to characterize the influence of several dopants and of some drawing process parameters on their radiation sensitivities. We present in this paper, the recent advances and results occurring from our coupled approach. On the experimental side, we studied the doping influence on the response of optical fibers and showed that changing the drawing parameters has a negligible influence on the fiber response in the case of specialty fibers. We focus mainly on the ${rm SiE}^prime$ defect that is observed through Electron Paramagnetic Resonance (EPR) measurements in all cano…

GW approximationNuclear and High Energy PhysicsOptical fiberMaterials scienceoptical fibersSiliconchemistry.chemical_element02 engineering and technology01 natural sciencesMolecular physics030218 nuclear medicine & medical imaginglaw.invention03 medical and health sciences[SPI]Engineering Sciences [physics]0302 clinical medicinelaw0103 physical sciencespoint defectsElectrical and Electronic Engineering010306 general physicsElectron paramagnetic resonanceSpectroscopydefectsdensity functional theoryCondensed matter physics010308 nuclear & particles physicsSettore FIS/01 - Fisica Sperimentale021001 nanoscience & nanotechnologyNuclear Energy and EngineeringchemistryUnpaired electronsilicaradiation effectsDensity functional theorytheoretical spectroscopyAb initio calculationsLocal-density approximation0210 nano-technology
researchProduct

Irradiation temperature influence on the in-situ measured radiation induced attenuation of Ge-doped fibers

2016

International audience; We report an experimental investigation on the radiation induced attenuation (RIA) in the ultraviolet-visible domain for Ge-doped optical fibers, during X-rays (10 keV) exposure at different temperatures. The objective is to characterize the impact of the irradiation temperature on the RIA levels and kinetics. Our data highlight that for dose exceeding 1 kGy(SiO2) the RIA spectrum changes with the irradiation temperature. In particular, for wavelengths below 470 nm the RIA depends both on the dose and on the irradiation temperature, whereas at higher wavelengths the RIA depends only on the dose. From the microscopic point of view the origin of this behavior is explai…

[PHYS]Physics [physics]Nuclear and High Energy PhysicsMaterials science010308 nuclear & particles physicsbusiness.industryAttenuationDopingAnalytical chemistry02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesTemperature measurementlaw.inventionWavelengthNuclear Energy and Engineeringlaw0103 physical sciencesOptoelectronicsFiberIrradiationElectrical and Electronic Engineering0210 nano-technologybusinessElectron paramagnetic resonanceLuminescenceIEEE Transactions on Nuclear Science
researchProduct

Radiation tolerant fiber Bragg gratings for high temperature monitoring at MGy dose levels

2014

International audience; We report a method for fabricating fiber Bragg gratings (FBG) resistant to very severe environments mixing high radiation doses (up to 3 MGy) and high temperatures (up to 230 degrees C). Such FBGs have been written in two types of radiation resistant optical fibers (pure-silica and fluorine-doped cores) by exposures to a 800 nm femtosecond IR laser at power exceeding 500 mW and then subjected to a thermal annealing treatment of 15 min at 750 degrees C. Under radiation, our study reveals that the radiation induced Bragg wavelength shift (BWS) at a 3 MGy dose is strongly reduced compared to responses of FBGs written with nonoptimized conditions. The BWS remains lower t…

Temperature monitoringMaterials scienceOptical fiber02 engineering and technologyRadiation01 natural sciencesTemperature measurementlaw.invention010309 optics020210 optoelectronics & photonicsOpticsSilica.Fiber Bragg gratinglaw0103 physical sciences0202 electrical engineering electronic engineering information engineeringIrradiationComputingMilieux_MISCELLANEOUS[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Radiationbusiness.industryFiber optics sensorFiber optics sensors; Fiber Bragg gratings; Radiation; Silica.Atomic and Molecular Physics and OpticsAmplitudeFiber Bragg gratingFemtosecondbusiness
researchProduct

Radiation Response of Ce-Codoped Germanosilicate and Phosphosilicate Optical Fibers

2016

We report an experimental investigation on the effects of Ce-codoping in determining the radiation response of germanosilicate and phosphosilicate Optical Fibers (OFs) in the UV-Visible domain and up to doses of $1~\hbox{MGy}({\rm SiO}_{2})$ . We show that the addition of Ce strongly impacts the Radiation Induced Attenuation (RIA) of both types of fibers. In the first case the radiation induced losses increase, whereas in the second one decrease. By combining the online RIA measurements with the Electron Paramagnetic Resonance (EPR) ones, we are able to infer the basic microscopic mechanisms taking place under irradiation, which involve the cerium codopant and some of the known Ge-related o…

optical fiberNuclear and High Energy PhysicsMaterials scienceMGy irradiationAnalytical chemistrychemistry.chemical_element02 engineering and technologyRadiationgermanosilicate01 natural sciencesradiation induced attenuationIonlaw.invention020210 optoelectronics & photonicsRadiation sensitivityOpticslaw0103 physical sciences0202 electrical engineering electronic engineering information engineeringphosphosilicateDosimetryIrradiationElectrical and Electronic EngineeringElectron paramagnetic resonanceNuclear and High Energy Physic[PHYS]Physics [physics]010308 nuclear & particles physicsbusiness.industrySettore FIS/01 - Fisica SperimentaleDopingCeriumCeriumNuclear Energy and EngineeringchemistrycodopingbusinessIEEE Transactions on Nuclear Science
researchProduct

Transient and Steady-State Radiation Response of Phosphosilicate Optical Fibers: Influence of H2 Loading

2019

The radiation response of a phosphorus-doped multimode optical fiber is investigated under both transient (pulsed X-rays) and steady-state ( $\gamma $ - and X-rays) irradiations. The influence of a H2 preloading on the fiber radiation-induced attenuation (RIA) in the 300–2000-nm wavelength range has been characterized. To better understand the impact of this treatment, online behaviors of fiber samples containing different amounts of gas are compared from glass saturation (100%) to less than 1%. In addition to these in situ experiments, additional postirradiation spectroscopic techniques have been performed such as electron paramagnetic resonance or luminescence measurements to identify the…

Nuclear and High Energy PhysicsOptical fiberMaterials scienceoptical fibersHydrogenAnalytical chemistrychemistry.chemical_element01 natural scienceslaw.invention[SPI]Engineering Sciences [physics]law0103 physical sciencesX-rayspoint defectsElectrical and Electronic Engineeringphosphoruspulsed X-raysSaturation (magnetic)ComputingMilieux_MISCELLANEOUS[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Multi-mode optical fiber010308 nuclear & particles physicsAttenuationtemperatureLiquid nitrogenCrystallographic defectNuclear Energy and Engineeringchemistryradiation effectsH2 loadingLuminescence
researchProduct

Direct evidence of secondary recoiled nuclei from high energy protons

2008

The production of secondary recoiled particles from interactions between high energy protons and microelectronics devices was investigated. By using NAND Flash memories, we were able to directly obtain analog information on recoil characteristics. While our results qualitatively confirm the role of nuclear reactions, in particular of those with tungsten, a quantitative model based on Monte Carlo and device-level simulations cannot describe the observed results in terms of recoils from proton-W reactions. © 2006 IEEE.

PhysicsNuclear reactionNuclear and High Energy Physicsbusiness.industryDirect evidencePhysics::Instrumentation and DetectorsMonte Carlo methodNAND gatechemistry.chemical_elementHigh energy protonsSingle event effectsTungstenFlash memorySpace radiationNuclear physicsRecoilNuclear Energy and EngineeringchemistryFloating gate memoriesMicroelectronicsElectrical and Electronic EngineeringAtomic physicsbusinessNuclear Experiment
researchProduct

Radiation and Hydrogen-Loading effects on Raman fiber-based temperature sensors

2013

We present experimental studies on how Raman based temperature sensors undergone two different treatments: gamma-radiation and H-loading. Unfortunately, gamma radiation and hydrogen release in harsh nuclear environment can affect the temperature measurements based on this technology of sensor, limiting the sensor performances. Moreover, the Raman device response in both cases changes with the different classes of multimode fibers that are used by the engineers.

Raman spectroscopy distributed temperature sensor optical fibers hydrogen loading radiation
researchProduct

Radiation Effects on Silica-Based Preforms and Optical Fibers - II: Coupling Ab Initio Simulations and Experiments

2008

International audience; Both experimental and theoretical approaches are combined to study the nature of precursor sites and radiation-induced point defects in pure and germanium-doped amorphous silica-based glasses.

Condensed Matter::Soft Condensed MatterCondensed Matter::Materials Science[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]silica optical fibers radiation effectsCondensed Matter::Disordered Systems and Neural Networks
researchProduct