0000000001191559
AUTHOR
Ulrich Langer
Functional A Posteriori Error Estimates for Time-Periodic Parabolic Optimal Control Problems
This article is devoted to the a posteriori error analysis of multiharmonic finite element approximations to distributed optimal control problems with time-periodic state equations of parabolic type. We derive a posteriori estimates of the functional type, which are easily computable and provide guaranteed upper bounds for the state and co-state errors as well as for the cost functional. These theoretical results are confirmed by several numerical tests that show high efficiency of the a posteriori error bounds. peerReviewed
A posteriori estimates for a coupled piezoelectric model
Erworben im Rahmen der Schweizer Nationallizenzen (http://www.nationallizenzen.ch)
Guaranteed error control bounds for the stabilised space-time IgA approximations to parabolic problems
The paper is concerned with space-time IgA approximations of parabolic initial-boundary value problems. We deduce guaranteed and fully computable error bounds adapted to special features of IgA approximations and investigate their applicability. The derivation method is based on the analysis of respective integral identities and purely functional arguments. Therefore, the estimates do not contain mesh-dependent constants and are valid for any approximation from the admissible (energy) class. In particular, they provide computable error bounds for norms associated with stabilised space-time IgA approximations as well as imply efficient error indicators enhancing the performance of fully adap…
Guaranteed error bounds and local indicators for adaptive solvers using stabilised space-time IgA approximations to parabolic problems
The paper is concerned with space–time IgA approximations to parabolic initial–boundary value problems. We deduce guaranteed and fully computable error bounds adapted to special features of such type of approximations and investigate their efficiency. The derivation of error estimates is based on the analysis of the corresponding integral identity and exploits purely functional arguments in the maximal parabolic regularity setting. The estimates are valid for any approximation from the admissible (energy) class and do not contain mesh-dependent constants. They provide computable and fully guaranteed error bounds for the norms arising in stabilised space–time approximations. Furthermore, a p…
Functional Type Error Control for Stabilised Space-Time IgA Approximations to Parabolic Problems
The paper is concerned with reliable space-time IgA schemes for parabolic initial-boundary value problems. We deduce a posteriori error estimates and investigate their applicability to space-time IgA approximations. Since the derivation is based on purely functional arguments, the estimates do not contain mesh dependent constants and are valid for any approximation from the admissible (energy) class. In particular, they imply estimates for discrete norms associated with stabilised space-time IgA approximations. Finally, we illustrate the reliability and efficiency of presented error estimates for the approximate solutions recovered with IgA techniques on a model example.
Space‐Time Isogeometric Analysis of Parabolic Diffusion Problems in Moving Spatial Domains
Functional Type Error Control for Stabilised Space-Time IgA Approximations to Parabolic Problems
The paper is concerned with reliable space-time IgA schemes for parabolic initial-boundary value problems. We deduce a posteriori error estimates and investigate their applicability to space-time IgA approximations. Since the derivation is based on purely functional arguments, the estimates do not contain mesh dependent constants and are valid for any approximation from the admissible (energy) class. In particular, they imply estimates for discrete norms associated with stabilised space-time IgA approximations. Finally, we illustrate the reliability and efficiency of presented error estimates for the approximate solutions recovered with IgA techniques on a model example. peerReviewed
Guaranteed error bounds and local indicators for adaptive solvers using stabilised space–time IgA approximations to parabolic problems
Abstract The paper is concerned with space–time IgA approximations to parabolic initial–boundary value problems. We deduce guaranteed and fully computable error bounds adapted to special features of such type of approximations and investigate their efficiency. The derivation of error estimates is based on the analysis of the corresponding integral identity and exploits purely functional arguments in the maximal parabolic regularity setting. The estimates are valid for any approximation from the admissible (energy) class and do not contain mesh-dependent constants. They provide computable and fully guaranteed error bounds for the norms arising in stabilised space–time approximations. Further…