0000000001195183

AUTHOR

Matthias Birkner

showing 14 related works from this author

Genealogies of Interacting Particle Systems

2020

Particle systemPhysicsStatistical physics
researchProduct

An ancestral recombination graph for diploid populations with skewed offspring distribution

2013

A large offspring number diploid biparental multilocus population model of Moran type is our object of study. At each timestep, a pair of diploid individuals drawn uniformly at random contribute offspring to the population. The number of offspring can be large relative to the total population size. Similar `heavily skewed' reproduction mechanisms have been considered by various authors recently. Each diploid parental individual contributes exactly one chromosome to each diploid offspring, and hence ancestral lineages can only coalesce when in distinct individuals. A separation of timescales phenomenon is thus observed. A result of M\"{o}hle (1998) is extended to obtain convergence of the an…

MaleLinkage disequilibriumOffspringPopulationLocus (genetics)BiologyInvestigations01 natural sciencesQuantitative Biology - Quantitative MethodsEvolution Molecular010104 statistics & probability03 medical and health sciencesFOS: MathematicsGeneticsAnimalsHumansComputer Simulation0101 mathematicseducationQuantitative Biology - Populations and EvolutionQuantitative Methods (q-bio.QM)030304 developmental biologyGeneticsRecombination Genetic0303 health scienceseducation.field_of_studyModels GeneticProbability (math.PR)Populations and Evolution (q-bio.PE)Ancestral recombination graphDiploidy92D15Genetics PopulationPopulation modelSample size determinationEvolutionary biologyGenetic LociFOS: Biological sciencesFemalePloidyAlgorithmsMathematics - Probability
researchProduct

Analysis of DNA sequence variation within marine species using Beta-coalescents

2013

We apply recently developed inference methods based on general coalescent processes to DNA sequence data obtained from various marine species. Several of these species are believed to exhibit so-called shallow gene genealogies, potentially due to extreme reproductive behaviour, e.g. via Hedgecock's "reproduction sweepstakes". Besides the data analysis, in particular the inference of mutation rates and the estimation of the (real) time to the most recent common ancestor, we briefly address the question whether the genealogies might be adequately described by so-called Beta coalescents (as opposed to Kingman's coalescent), allowing multiple mergers of genealogies. The choice of the underlying…

Most recent common ancestorMutation ratePopulation geneticsInferenceMarine Biology62F99 (Primary) 62P10 92D10 92D20 (Secondary)Biology01 natural sciencesArticleDNA sequencingCoalescent theory010104 statistics & probability03 medical and health sciencesFOS: MathematicsAnimals0101 mathematicsQuantitative Biology - Populations and EvolutionEcology Evolution Behavior and Systematics030304 developmental biologycomputer.programming_languageMarine biology0303 health sciencesBETA (programming language)Probability (math.PR)Populations and Evolution (q-bio.PE)Sequence Analysis DNAOstreidaeEvolutionary biologyFOS: Biological sciencescomputerMathematics - Probability
researchProduct

One-dimensional random walks with self-blocking immigration

2017

We consider a system of independent one-dimensional random walkers where new particles are added at the origin at fixed rate whenever there is no older particle present at the origin. A Poisson ansatz leads to a semi-linear lattice heat equation and predicts that starting from the empty configuration the total number of particles grows as $c \sqrt{t} \log t$. We confirm this prediction and also describe the asymptotic macroscopic profile of the particle configuration.

Statistics and Probability60G50Particle numbervacant timeInteracting random walksPoisson distributionPoisson comparison01 natural sciences010104 statistics & probabilitysymbols.namesakeLattice (order)FOS: Mathematicsdensity-dependent immigrationStatistical physics0101 mathematicsAnsatzMathematics010102 general mathematicsProbability (math.PR)Random walk60K35symbolsHeat equationStatistics Probability and Uncertainty60F99Mathematics - Probability
researchProduct

Non-Periodic Systems with Continuous Diffraction Measures

2015

The present state of mathematical diffraction theory for systems with continuous spectral components is reviewed and extended. We begin with a discussion of various characteristic examples with singular or absolutely continuous diffraction, and then continue with a more general exposition of a systematic approach via stationary stochastic point processes. Here, the intensity measure of the Palm measure takes the role of the autocorrelation measure in the traditional approach. We furthermore introduce a ‘Palm-type’ measure for general complex-valued random measures that are stationary and ergodic, and relate its intensity measure to the autocorrelation measure.

Random measureMathematical analysisComplex measureInformation theory and measure theoryInvariant measureStatistical physicsDiscrete measureEmpirical measureMeasure (mathematics)Point processMathematics
researchProduct

Directed random walk on the backbone of an oriented percolation cluster

2012

We consider a directed random walk on the backbone of the infinite cluster generated by supercritical oriented percolation, or equivalently the space-time embedding of the ``ancestral lineage'' of an individual in the stationary discrete-time contact process. We prove a law of large numbers and an annealed central limit theorem (i.e., averaged over the realisations of the cluster) using a regeneration approach. Furthermore, we obtain a quenched central limit theorem (i.e.\ for almost any realisation of the cluster) via an analysis of joint renewals of two independent walks on the same cluster.

Statistics and ProbabilityDiscrete mathematicsdynamical random environment82B43Probability (math.PR)Random walkRandom walksupercritical clusterddc:60K3760K37 60J10 82B43 60K35Mathematics::Probability60K35Percolationcentral limit theorem in random environmentContact process (mathematics)Cluster (physics)FOS: MathematicsEmbedding60J10Statistics Probability and UncertaintyMathematics - Probabilityoriented percolationMathematicsCentral limit theorem
researchProduct

Random walks in dynamic random environments and ancestry under local population regulation

2015

We consider random walks in dynamic random environments, with an environment generated by the time-reversal of a Markov process from the oriented percolation universality class. If the influence of the random medium on the walk is small in space-time regions where the medium is typical, we obtain a law of large numbers and an averaged central limit theorem for the walk via a regeneration construction under suitable coarse-graining. Such random walks occur naturally as spatial embeddings of ancestral lineages in spatial population models with local regulation. We verify that our assumptions hold for logistic branching random walks when the population density is sufficiently high.

Statistics and Probability82B43Markov processRandom walklogistic branching random walk01 natural sciences60K37 60J10 60K35 82B43010104 statistics & probabilitysymbols.namesakeMathematics::ProbabilityFOS: MathematicsLocal populationStatistical physics0101 mathematicsoriented percolationCentral limit theoremMathematicsdynamical random environmentProbability (math.PR)010102 general mathematicsRandom mediaRenormalization groupsupercritical clusterRandom walk60K37Population model60K35central limit theorem in random environmentPercolationsymbols60J10Statistics Probability and UncertaintyMathematics - ProbabilityElectronic Journal of Probability
researchProduct

Importance sampling for Lambda-coalescents in the infinitely many sites model

2011

We present and discuss new importance sampling schemes for the approximate computation of the sample probability of observed genetic types in the infinitely many sites model from population genetics. More specifically, we extend the 'classical framework', where genealogies are assumed to be governed by Kingman's coalescent, to the more general class of Lambda-coalescents and develop further Hobolth et. al.'s (2008) idea of deriving importance sampling schemes based on 'compressed genetrees'. The resulting schemes extend earlier work by Griffiths and Tavar\'e (1994), Stephens and Donnelly (2000), Birkner and Blath (2008) and Hobolth et. al. (2008). We conclude with a performance comparison o…

Class (set theory)ComputationSample (statistics)62F99 (Primary) 62P10 92D10 92D20 (Secondary)LambdaArticleSampling StudiesCoalescent theoryEvolution MolecularGene FrequencyFOS: MathematicsQuantitative Biology::Populations and EvolutionAnimalsQuantitative Biology - Populations and EvolutionEcology Evolution Behavior and Systematicscomputer.programming_languageMathematicsDiscrete mathematicsModels GeneticBETA (programming language)Probability (math.PR)Populations and Evolution (q-bio.PE)Markov ChainsGenetics PopulationPerformance comparisonFOS: Biological sciencesMutationcomputerMonte Carlo MethodMathematics - ProbabilityImportance sampling
researchProduct

Statistical properties of the site-frequency spectrum associated with lambda-coalescents.

2013

Abstract Statistical properties of the site-frequency spectrum associated with Λ-coalescents are our objects of study. In particular, we derive recursions for the expected value, variance, and covariance of the spectrum, extending earlier results of Fu (1995) for the classical Kingman coalescent. Estimating coalescent parameters introduced by certain Λ-coalescents for data sets too large for full-likelihood methods is our focus. The recursions for the expected values we obtain can be used to find the parameter values that give the best fit to the observed frequency spectrum. The expected values are also used to approximate the probability a (derived) mutation arises on a branch subtending a…

PseudolikelihoodMaleAquatic OrganismsInferenceExpected valueBiologyInvestigationsLambdaDNA MitochondrialCoalescent theoryGeneticsQuantitative Biology::Populations and EvolutionAnimalsComputer SimulationGeneticsPopulation DensityLikelihood FunctionsModels StatisticalModels GeneticReproductionCovarianceFrequency spectrumFertilityGenetics PopulationGadus morhuaSample size determinationMutationFemaleGenetics
researchProduct

Disorder relevance for the random walk pinning model in dimension 3

2011

We study the continuous time version of the random walk pinning model, where conditioned on a continuous time random walk Y on Z^d with jump rate \rho>0, which plays the role of disorder, the law up to time t of a second independent random walk X with jump rate 1 is Gibbs transformed with weight e^{\beta L_t(X,Y)}, where L_t(X,Y) is the collision local time between X and Y up to time t. As the inverse temperature \beta varies, the model undergoes a localization-delocalization transition at some critical \beta_c>=0. A natural question is whether or not there is disorder relevance, namely whether or not \beta_c differs from the critical point \beta_c^{ann} for the annealed model. In Birkner a…

Statistics and Probability60K35 82B4482B44Probability (math.PR)Random mediaGeometryMarginal disorderFractional moment methodMean estimationMathematics::Probability60K35Local limit theoremFOS: MathematicsCollision local timeDisordered pinning modelsStatistics Probability and UncertaintyRandom walksHumanitiesRenewal processes with infinite meanMathematics - ProbabilityMathematicsAnnales de l'Institut Henri Poincaré, Probabilités et Statistiques
researchProduct

Properties of modified hepatitis B virus surface antigen particles carrying preS epitopes

1995

The current hepatitis B virus (HBV) vaccines contain the small (S) and middle (M) viral envelope proteins in particulate form but lack the large (L) protein. Although these particles elicit protective immunity to HBV, inclusion of the immunogenic preS1 region of the L protein may enhance their efficacy. To present preS1-derived epitopes on secretable subviral particles we rearranged the HBV envelope ORF by fusing part or all of the preS1 region to either the N or C terminus of the S protein. Fusion of the first 42 residues of preS1 to either site allowed efficient secretion of the modified particles and rendered the linked sequence accessible at the surface of the particle. Conversely, fusi…

Signal peptideHepatitis B virusAntigenicityMyeloma proteinHeterologousmedicine.disease_causeEpitopeCell LineEpitopesMiceViral Envelope ProteinsViral envelopeVirologymedicineAnimalsHumansHepatitis B VaccinesCloning MolecularProtein PrecursorsHepatitis B virusMice Inbred BALB CVaccines SyntheticHepatitis B Surface AntigensbiologyVirionVirologyMolecular biologybiology.proteinAntibodyJournal of General Virology
researchProduct

Coalescing directed random walks on the backbone of a 1 +1-dimensional oriented percolation cluster converge to the Brownian web

2018

We consider the backbone of the infinite cluster generated by supercritical oriented site percolation in dimension 1 +1. A directed random walk on this backbone can be seen as an "ancestral line" of an individual sampled in the stationary discrete-time contact process. Such ancestral lineages were investigated in [BCDG13] where a central limit theorem for a single walker was proved. Here, we consider infinitely many coalescing walkers on the same backbone starting at each space-time point. We show that, after diffusive rescaling, the collection of paths converges in distribution to the Brownian web. Hence, we prove convergence to the Brownian web for a particular system of coalescing random…

Probability (math.PR)FOS: MathematicsOriented percolation coalescing random walks Brownian webMathematics - Probability
researchProduct

Probabilities of large values for sums of i.i.d. non-negative random variables with regular tail of index $-1$

2021

Let $\xi_1, \xi_2, \dots$ be i.i.d. non-negative random variables whose tail varies regularly with index $-1$, let $S_n$ be the sum and $M_n$ the largest of the first $n$ values. We clarify for which sequences $x_n\to\infty$ we have $\mathbb P(S_n \ge x_n) \sim \mathbb P(M_n \ge x_n)$ as $n\to\infty$. Outside this regime, the typical size of $S_n$ conditioned on exceeding $x_n$ is not completely determined by the largest summand and we provide an appropriate correction term which involves the integrated tail of $\xi_1$.

Mathematics::ProbabilityProbability (math.PR)FOS: Mathematics60F10 60E07 92D10Mathematics - Probability
researchProduct

Collective vs. individual behaviour for sums of i.i.d. random variables: appearance of the one-big-jump phenomenon

2023

This article studies large and local large deviations for sums of i.i.d. real-valued random variables in the domain of attraction of an $\alpha$-stable law, $\alpha\in (0,2]$, with emphasis on the case $\alpha=2$. There are two different scenarios: either the deviation is realised via a collective behaviour with all summands contributing to the deviation (a Gaussian scenario), or a single summand is atypically large and contributes to the deviation (a one-big-jump scenario). Such results are known when $\alpha \in (0,2)$ (large deviations always follow a one big-jump scenario) or when the random variables admit a moment of order $2+\delta$ for some $\delta>0$. We extend these results, inclu…

60F10 60G50Probability (math.PR)FOS: MathematicsMathematics - Probability
researchProduct