0000000001195184
AUTHOR
Linglong Yuan
A generalization of Kingman's model of selection and mutation and the Lenski experiment.
Kingman’s model of selection and mutation studies the limit type value distribution in an asexual population of discrete generations and infinite size undergoing selection and mutation. This paper generalizes the model to analyze the long-term evolution of Escherichia. coli in Lenski experiment. Weak assumptions for fitness functions are proposed and the mutation mechanism is the same as in Kingman’s model. General macroscopic epistasis are designable through fitness functions. Convergence to the unique limit type distribution is obtained.
Probabilities of large values for sums of i.i.d. non-negative random variables with regular tail of index $-1$
Let $\xi_1, \xi_2, \dots$ be i.i.d. non-negative random variables whose tail varies regularly with index $-1$, let $S_n$ be the sum and $M_n$ the largest of the first $n$ values. We clarify for which sequences $x_n\to\infty$ we have $\mathbb P(S_n \ge x_n) \sim \mathbb P(M_n \ge x_n)$ as $n\to\infty$. Outside this regime, the typical size of $S_n$ conditioned on exceeding $x_n$ is not completely determined by the largest summand and we provide an appropriate correction term which involves the integrated tail of $\xi_1$.
On a representation theorem for finitely exchangeable random vectors
A random vector $X=(X_1,\ldots,X_n)$ with the $X_i$ taking values in an arbitrary measurable space $(S, \mathscr{S})$ is exchangeable if its law is the same as that of $(X_{\sigma(1)}, \ldots, X_{\sigma(n)})$ for any permutation $\sigma$. We give an alternative and shorter proof of the representation result (Jaynes \cite{Jay86} and Kerns and Sz\'ekely \cite{KS06}) stating that the law of $X$ is a mixture of product probability measures with respect to a signed mixing measure. The result is "finitistic" in nature meaning that it is a matter of linear algebra for finite $S$. The passing from finite $S$ to an arbitrary one may pose some measure-theoretic difficulties which are avoided by our p…
Collective vs. individual behaviour for sums of i.i.d. random variables: appearance of the one-big-jump phenomenon
This article studies large and local large deviations for sums of i.i.d. real-valued random variables in the domain of attraction of an $\alpha$-stable law, $\alpha\in (0,2]$, with emphasis on the case $\alpha=2$. There are two different scenarios: either the deviation is realised via a collective behaviour with all summands contributing to the deviation (a Gaussian scenario), or a single summand is atypically large and contributes to the deviation (a one-big-jump scenario). Such results are known when $\alpha \in (0,2)$ (large deviations always follow a one big-jump scenario) or when the random variables admit a moment of order $2+\delta$ for some $\delta>0$. We extend these results, inclu…