0000000001212694

AUTHOR

Jacobo Díaz-polo

showing 11 related works from this author

Quantum geometry and microscopic black hole entropy

2006

9 pages, 6 figures.-- PACS nrs.: 04.60.Pp, 04.70.Dy.-- ISI Article Identifier: 000242448900013.-- Published online on Nov 28, 2006.

High Energy Physics - TheoryPhysicsQuantum geometryPhysics and Astronomy (miscellaneous)LogarithmEntropy (statistical thermodynamics)Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Loop quantum gravityGeneral Relativity and Quantum CosmologyBlack holeGeneral Relativity and Quantum Cosmologysymbols.namesakeHigh Energy Physics - Theory (hep-th)[PACS] Quantum aspects of black holes evaporation thermodynamicssymbolsPlanckBlack hole thermodynamicsQuantum[PACS] Loop quantum gravity quantum geometry spin foamsMathematical physics
researchProduct

Combinatorics of theSU(2)black hole entropy in loop quantum gravity

2009

We use the combinatorial and number-theoretical methods developed in previous works by the authors to study black hole entropy in the new proposal put forth by Engle, Noui, and Perez. Specifically, we give the generating functions relevant for the computation of the entropy and use them to derive its asymptotic behavior, including the value of the Immirzi parameter and the coefficient of the logarithmic correction.

PhysicsNuclear and High Energy PhysicsConfiguration entropyImmirzi parameterTheoryofComputation_GENERALLoop quantum gravityBinary entropy functionGeneral Relativity and Quantum CosmologyTheoretical physicsClassical mechanicsQuantum gravityBlack hole thermodynamicsEntropy (arrow of time)Joint quantum entropyPhysical Review D
researchProduct

Loop quantum gravity and Planck-size black hole entropy

2007

The Loop Quantum Gravity (LQG) program is briefly reviewed and one of its main applications, namely the counting of black hole entropy within the framework is considered. In particular, recent results for Planck size black holes are reviewed. These results are consistent with an asymptotic linear relation (that fixes uniquely a free parameter of the theory) and a logarithmic correction with a coefficient equal to -1/2. The account is tailored as an introduction to the subject for non-experts.

PhysicsHistoryLogarithmFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Loop quantum gravityLinear-quadratic-Gaussian controlGeneral Relativity and Quantum CosmologyComputer Science ApplicationsEducationsymbols.namesakeTheoretical physicsGeneral Relativity and Quantum CosmologysymbolsLinear relationPlanckBlack hole thermodynamicsFree parameter
researchProduct

U(N) invariant dynamics for a simplified loop quantum gravity model

2011

The implementation of the dynamics in Loop Quantum Gravity (LQG) is still an open problem. Here, we discuss a tentative dynamics for the simplest class of graphs in LQG: Two vertices linked with an arbitrary number of edges. We use the recently introduced U(N) framework in order to construct SU(2) invariant operators and define a global U(N) symmetry that will select the homogeneous/isotropic states. Finally, we propose a Hamiltonian operator invariant under area-preserving deformations of the boundary surface and we identify possible connections of this model with Loop Quantum Cosmology.

PhysicsSurface (mathematics)History010308 nuclear & particles physicsOpen problemFOS: Physical sciencesBoundary (topology)General Relativity and Quantum Cosmology (gr-qc)Loop quantum gravityLinear-quadratic-Gaussian control01 natural sciencesGeneral Relativity and Quantum CosmologySymmetry (physics)Computer Science ApplicationsEducation0103 physical sciencesddc:530Invariant (mathematics)010306 general physicsMathematical physicsLoop quantum cosmologyJournal of Physics: Conference Series
researchProduct

Black Hole Entropy Quantization

2006

Ever since the pioneer works of Bekenstein and Hawking, black hole entropy has been known to have a quantum origin. Furthermore, it has long been argued by Bekenstein that entropy should be quantized in discrete (equidistant) steps given its identification with horizon area in (semi-)classical general relativity and the properties of area as an adiabatic invariant. This lead to the suggestion that black hole area should also be quantized in equidistant steps to account for the discrete black hole entropy. Here we shall show that loop quantum gravity, in which area is {\it not} quantized in equidistant steps can nevertheless be consistent with Bekenstein's equidistant entropy proposal in a s…

High Energy Physics - TheoryHolographic principlePhysicsWhite holeBlack hole information paradoxBekenstein boundFOS: Physical sciencesGeneral Physics and AstronomyGeneral Relativity and Quantum Cosmology (gr-qc)General Relativity and Quantum CosmologyGeneral Relativity and Quantum CosmologyTheoretical physicsClassical mechanicsHigh Energy Physics - Theory (hep-th)Extremal black holeBlack hole thermodynamicsBlack hole complementarityHawking radiationPhysical Review Letters
researchProduct

Black hole state counting in loop quantum gravity: a number-theoretical approach

2008

4 pages, 1 figure.-- PACS nrs.: 04.70.Dy, 04.60.Pp.-- ArXiv pre-print available at: http://arxiv.org/abs/0802.4077

PhysicsMatemáticasAstrophysics::High Energy Astrophysical PhenomenaImmirzi parameterGeneral Physics and AstronomyFOS: Physical sciencesFísicaLoop quantum gravityGeneral Relativity and Quantum Cosmology (gr-qc)Mathematical Physics (math-ph)General Relativity and Quantum CosmologyBlack holeTheoretical physicsMicro black holeGeneral Relativity and Quantum CosmologyClassical mechanicsExtremal black hole[PACS] Quantum aspects of black holes evaporation thermodynamicsVirtual black holeBlack hole thermodynamics[PACS] Loop quantum gravity quantum geometry spin foamsMathematical PhysicsBlack hole complementarity
researchProduct

Dynamics for a simple graph using the U(N) framework for loop quantum gravity

2012

The implementation of the dynamics in loop quantum gravity (LQG) is still an open problem. Here, we discuss a tentative dynamics for the simplest class of graphs in LQG: Two vertices linked with an arbitrary number of edges. We find an interesting global U(N) symmetry in this model that selects the homogeneous/isotropic sector. Then, we propose a quantum Hamiltonian operator for this reduced sector. Finally, we introduce the spinor representation for LQG in order to propose a classical effective dynamics for this model.

PhysicsHistorySpinorOpen problemFOS: Physical sciencesLoop quantum gravityGeneral Relativity and Quantum Cosmology (gr-qc)Linear-quadratic-Gaussian controlGeneral Relativity and Quantum CosmologySymmetry (physics)Computer Science ApplicationsEducationTheoretical physicsComputer Science::Systems and ControlQuantum gravityddc:530Representation (mathematics)Quantum
researchProduct

Dynamics for a 2-vertex Quantum Gravity Model

2010

We use the recently introduced U(N) framework for loop quantum gravity to study the dynamics of spin network states on the simplest class of graphs: two vertices linked with an arbitrary number N of edges. Such graphs represent two regions, in and out, separated by a boundary surface. We study the algebraic structure of the Hilbert space of spin networks from the U(N) perspective. In particular, we describe the algebra of operators acting on that space and discuss their relation to the standard holonomy operator of loop quantum gravity. Furthermore, we show that it is possible to make the restriction to the isotropic/homogeneous sector of the model by imposing the invariance under a global …

PhysicsPhysics and Astronomy (miscellaneous)[PHYS.GRQC] Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]010308 nuclear & particles physicsHolonomyHilbert spaceFOS: Physical sciencesLoop quantum gravityGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum CosmologyVertex (geometry)symbols.namesakeOperator (computer programming)0103 physical sciencesPhysical Sciencessymbols[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Quantum gravitySpin network010306 general physicsLoop quantum cosmologyMathematical physics
researchProduct

Computing black hole entropy in loop quantum gravity from a conformal field theory perspective

2009

Motivated by the analogy proposed by Witten between Chern-Simons and conformal field theories, we explore an alternative way of computing the entropy of a black hole starting from the isolated horizon framework in loop quantum gravity. The consistency of the result opens a window for the interplay between conformal field theory and the description of black holes in loop quantum gravity.

High Energy Physics - TheoryPhysics010308 nuclear & particles physicsConformal field theoryAstrophysics::High Energy Astrophysical PhenomenaGravityFOS: Physical sciencesAstronomy and AstrophysicsConformal mapGeneral Relativity and Quantum Cosmology (gr-qc)Loop quantum gravity01 natural sciencesGeneral Relativity and Quantum CosmologyBlack holeQuantum black holesHigh Energy Physics::TheoryGeneral Relativity and Quantum CosmologyTheoretical physicsHigh Energy Physics - Theory (hep-th)0103 physical sciences010306 general physicsBlack hole thermodynamicsEntropy (arrow of time)Journal of Cosmology and Astroparticle Physics
researchProduct

Black hole state degeneracy in Loop Quantum Gravity

2008

The combinatorial problem of counting the black hole quantum states within the Isolated Horizon framework in Loop Quantum Gravity is analyzed. A qualitative understanding of the origin of the band structure shown by the degeneracy spectrum, which is responsible for the black hole entropy quantization, is reached. Even when motivated by simple considerations, this picture allows to obtain analytical expressions for the most relevant quantities associated to this effect.

PhysicsNuclear and High Energy PhysicsAstrophysics::High Energy Astrophysical PhenomenaImmirzi parameterFOS: Physical sciencesLoop quantum gravityGeneral Relativity and Quantum Cosmology (gr-qc)General Relativity and Quantum CosmologyBlack holeGeneral Relativity and Quantum CosmologyQuantum mechanicsExtremal black holeVirtual black holeBlack hole thermodynamicsBlack hole complementarityHawking radiation
researchProduct

Combinatorics of the SU(2) black hole entropy in loop quantum gravity

2009

We use the combinatorial and number-theoretical methods developed in previous works by the authors to study black hole entropy in the new proposal put forth by Engle, Noui, and Perez. Specifically, we give the generating functions relevant for the computation of the entropy and use them to derive its asymptotic behavior, including the value of the Immirzi parameter and the coefficient of the logarithmic correction.

General Relativity and Quantum CosmologyMatemáticasTheoryofComputation_GENERALFísica
researchProduct