0000000001220476
AUTHOR
Eugene Tukalenko
Additional file 4: of Fibroblasts from bank voles inhabiting Chernobyl have increased resistance against oxidative and DNA stresses
The trapping locations of the bank voles used in this study for fibroblast isolation. The green circles present the location at Kiev control area (average site radiation 0.2 μSv/h) where the control voles were trapped and the red circle denotes the site where Chernobyl voles were caught (average site radiation 21 μSv/h). Black dashed line indicates the 30 km Chernobyl exclusion zone. CNPP with a red triangle shows the location of the Chernobyl nuclear power plants. A map of Ukraine as an inset show by a red square the location of Chernobyl area. Map was created with ESRI ArcGIS 10.0. Satellite imagery © CNES/Airbus DS, Earthstar Geographics. Source: Esri, DigitalGlobe, GeoEye, i-cubed, Eart…
Urban forest soils harbour distinct and more diverse communities of bacteria and fungi compared to less disturbed forest soils.
Anthropogenic changes to land use drive concomitant changes in biodiversity, including that of the soil microbiota. However, it is not clear how increasing intensity of human disturbance is reflected in the soil microbial communities. To address this issue, we used amplicon sequencing to quantify the microbiota (bacteria and fungi) in the soil of forests (n=312) experiencing four different land uses, national parks (set aside for nature conservation), managed (for forestry purposes), suburban (on the border of an urban area) and urban (fully within a town or city), which broadly represent a gradient of anthropogenic disturbance. Alpha diversity of bacteria and fungi increased with increasin…
Additional file 7: of Skin and gut microbiomes of a wild mammal respond to different environmental cues
Measures of alpha diversity for the skin microbiota of bank voles inhabiting areas that differ in levels of environmental radiation. Box-and-whisker plots represent the median and interquartile range of alpha diversity estimates (i.e. number of observed OTUs, Shannon index). Each box plot represent alpha diversity of the skin microbiome of bank vole females and males from contaminated (CH) and uncontaminated (CL) with radionuclides areas within the Chernobyl Exclusion Zone and uncontaminated area near Kyiv (KL), Ukraine. (PDF 8â kb)
Additional file 2: of Skin and gut microbiomes of a wild mammal respond to different environmental cues
Individual dosimetry supplementary information: measurements of the 137Cs activity and external radiation dose estimates for sampled bank voles. (DOCX 15â kb)
Additional file 12: of Skin and gut microbiomes of a wild mammal respond to different environmental cues
Measures of alpha diversity for the skin and gut microbiome of bank voles inhabiting areas that differ in levels of environmental radiation. Box-and-whisker plots represent the median and interquartile range of alpha diversity estimates (i.e. number of observed OTUs, Shannon index). Each point represent a single sample from contaminated (CH) and uncontaminated (CL) with radionuclides areas within the Chernobyl Exclusion Zone and uncontaminated area near Kyiv (KL), Ukraine. (PDF 39â kb)
Skin and gut microbiomes of a wild mammal respond to different environmental cues
Background Animal skin and gut microbiomes are important components of host fitness. However, the processes that shape the microbiomes of wildlife are poorly understood, particularly with regard to exposure to environmental contaminants. We used 16S rRNA amplicon sequencing to quantify how exposure to radionuclides impacts the skin and gut microbiota of a small mammal, the bank vole Myodes glareolus, inhabiting areas within and outside the Chernobyl Exclusion Zone (CEZ), Ukraine. Results Skin microbiomes of male bank voles were more diverse than females. However, the most pronounced differences in skin microbiomes occurred at a larger spatial scale, with higher alpha diversity in the skin m…
Comparable response of wild rodent gut microbiome to anthropogenic habitat contamination
Abstract Species identity is thought to dominate over environment in shaping wild rodent gut microbiota, but it remains unknown whether the responses of host gut microbiota to shared anthropogenic habitat impacts are species-specific or if the general gut microbiota response is similar across host species. Here, we compare the influence of exposure to radionuclide contamination on the gut microbiota of four wild mouse species: Apodemus flavicollis, A. sylvaticus, A. speciosus and A. argenteus. Building on the evidence that radiation impacts bank vole (Myodes glareolus) gut microbiota, we hypothesized that radiation exposure has a general impact on rodent gut microbiota. Because we sampled (…
Exposure to environmental radionuclides associates with tissue-specific impacts on telomerase expression and telomere length
International audience; Telomeres, the protective structures at the ends of chromosomes, can be shortened when individuals are exposed to stress. In some species, the enzyme telomerase is expressed in adult somatic tissues, and potentially protects or lengthens telomeres. Telomeres can be damaged by ionizing radiation and oxidative stress, although the effect of chronic exposure to elevated levels of radiation on telomere maintenance is unknown for natural populations. We quantified telomerase expression and telomere length (TL) in different tissues of the bank vole Myodes glareolus, collected from the Chernobyl Exclusion Zone, an environment heterogeneously contaminated with radionuclides,…
Fibroblasts from bank voles inhabiting Chernobyl have increased resistance against oxidative and DNA stresses
Background Elevated levels of environmental ionizing radiation can be a selective pressure for wildlife by producing reactive oxygen species and DNA damage. However, the underlying molecular mechanisms that are affected are not known. Results We isolated skin fibroblasts from bank voles (Myodes glareolus) inhabiting the Chernobyl nuclear power plant accident site where background radiation levels are about 100 times greater than in uncontaminated areas. After a 10 Gy dose of gamma radiation fibroblasts from Chernobyl animals recovered faster than fibroblasts isolated from bank voles living in uncontaminated control area. The Chernobyl fibroblasts were able to sustain significantly higher do…
Exposure to environmental radionuclides alters mitochondrial DNA maintenance in a wild rodent
AbstractMitochondria are sensitive to oxidative stress, including that derived from ionizing radiation. To quantify the effects of exposure to environmental radionuclides on mitochondrial DNA (mtDNA) dynamics in wildlife, bank voles (Myodes glareolus) were collected from the chernobyl exclusion zone (CEZ), where animals are exposed to elevated levels of radionuclides, and from uncontaminated areas within the CEZ and elsewhere in Ukraine. Brains of bank voles from outside the CEZ were characterized by low mtDNA copy number and low mtDNA damage; by contrast, bank voles within the CEZ had high mtDNA copy number and high mtDNA damage, consistent with putative damaging effects of elevated radiat…
Two hundred and fifty-four metagenome-assembled bacterial genomes from the bank vole gut microbiota.
Abstract Vertebrate gut microbiota provide many essential services to their host. To better understand the diversity of such services provided by gut microbiota in wild rodents, we assembled metagenome shotgun sequence data from a small mammal, the bank vole Myodes glareolus (Rodentia, Cricetidae). We were able to identify 254 metagenome assembled genomes (MAGs) that were at least 50% ( n = 133 MAGs), 80% ( n = 77 MAGs) or 95% ( n = 44 MAGs) complete. As typical for a rodent gut microbiota, these MAGs are dominated by taxa assigned to the phyla Bacteroidetes ( n = 132 MAGs) and Firmicutes ( n = 80), with some Spirochaetes ( n = 15) and Proteobacteria ( n = 11). Based on coverage over…
Expansion of rDNA and pericentromere satellite repeats in the genomes of bank voles Myodes glareolus exposed to environmental radionuclides
Abstract Altered copy number of certain highly repetitive regions of the genome, such as satellite DNA within heterochromatin and ribosomal RNA loci (rDNA), is hypothesized to help safeguard the genome against damage derived from external stressors. We quantified copy number of the 18S rDNA and a pericentromeric satellite DNA (Msat‐160) in bank voles (Myodes glareolus) inhabiting the Chernobyl Exclusion Zone (CEZ), an area that is contaminated by radionuclides and where organisms are exposed to elevated levels of ionizing radiation. We found a significant increase in 18S rDNA and Msat‐160 content in the genomes of bank voles from contaminated locations within the CEZ compared with animals f…
Applying the Anna Karenina principle for wild animal gut microbiota : temporal stability of the bank vole gut microbiota in a disturbed environment
Gut microbiota play an important role in host health. Yet, the drivers and patterns of microbiota imbalance (dysbiosis) in wild animals remain largely unexplored. One hypothesised outcome of stress on animal microbiomes is a destabilised microbial community that is characterised by an increase in inter-individual differences compared with microbiomes of healthy animals, which are expected to be (i) temporally stable and (ii) relatively similar among individuals. This set of predictions for response of microbiomes to stressors is known as the Anna Karenina principle (AKP) for animal microbiomes. We examine the AKP in a wild mammal inhabiting disturbed environments by conducting a capture-mar…
Additional file 2: of Fibroblasts from bank voles inhabiting Chernobyl have increased resistance against oxidative and DNA stresses
The repair efficiency of nicked, oxidized, or linear plasmids is similar in control and Chernobyl bank vole fibroblasts. For host-cell reactivation assay, 5000 cells were plated on 96 well plate, treated next day with 20 μM etoposide for 8 hours, and then transfected with pGL3 (Promega) plasmid treated either with Nb.BsmI that nicked the plasmid coding sequence three times, with HindIII that linearized the plasmid after promoter sequence, or with 50 μM FeSO4 and 1 mM H2O2, which created oxidative damage on the plasmid. To control transfection efficiency cells were transfected also with pNL1.1 nano-luc vector. Luciferase expression was analysed 24 h after transfection with Nano-Glo Dual-Luci…
Interpretation of gut microbiota data in the ‘eye of the beholder’: A commentary and re‐evaluation of data from ‘Impacts of radiation exposure on the bacterial and fungal microbiome of small mammals in the Chernobyl Exclusion Zone’
1.Evidence that exposure to environmental pollutants can alter the gut microbiota composition of wildlife includes studies of rodents exposed to radionuclides. 2.Antwis et al. (2021) used amplicon sequencing to characterise the gut microbiota of four species of rodent (Myodes glareolus, Apodemus agrarius, A. flavicollis and A. sylvaticus) inhabiting the Chernobyl Exclusion Zone (CEZ) to examine possible changes in gut bacteria (microbiota) and gut fungi (mycobiota) associated with exposure to radionuclides and whether the sample type (from caecum or faeces) affected the analysis. 3.The conclusions derived from the analyses of gut mycobiota are based on data that represent a mixture of inges…
Environmental radiation alters the gut microbiome of the bank vole Myodes glareolus.
International audience; Gut microbiota composition depends on many factors, although the impact of environmental pollution is largely unknown. We used amplicon sequencing of bacterial 16S rRNA genes to quantify whether anthropogenic radionuclides at Chernobyl (Ukraine) impact the gut microbiome of the bank vole Myodes glareolus. Exposure to elevated levels of environmental radionuclides had no detectable effect on the gut community richness but was associated with an almost twofold increase in the Firmicutes:Bacteroidetes ratio. Animals inhabiting uncontaminated areas had remarkably similar gut communities irrespective of their proximity to the nuclear power plant. Hence, samples could be c…
Additional file 13: of Skin and gut microbiomes of a wild mammal respond to different environmental cues
Community dissimilarity between gut and skin microbiomes within each replicate site. Box-and-whisker plots represent the median and interquartile range of Bray-Curtis distance between samples. Each box plot represent contaminated (CH1-3) and uncontaminated (CL1-2) with radionuclides study areas within the Chernobyl Exclusion Zone and uncontaminated area near Kyiv (KL1-2), Ukraine. (PDF 43â kb)
Ecological mechanisms can modify radiation effects in a key forest mammal of Chernobyl
International audience; Nuclear accidents underpin the need to quantify the ecological mechanisms which determine injury to ecosystems from chronic low-dose radiation. Here, we tested the hypothesis that ecological mechanisms interact with ionizing radiation to affect natural populations in unexpected ways. We used large-scale replicated experiments and food manipulations in wild populations of the rodent, Myodes glareolus, inhabiting the region near the site of the Chernobyl disaster of 1986. We show linear decreases in breeding success with increasing ambient radiation levels with no evidence of any threshold below which effects are not seen. Food supplementation of experimental populatio…
Infection Load and Prevalence of Novel Viruses Identified from the Bank Vole Do Not Associate with Exposure to Environmental Radioactivity
Bank voles (Myodes glareolus) are host to many zoonotic viruses. As bank voles inhabiting areas contaminated by radionuclides show signs of immunosuppression, resistance to apoptosis, and elevated DNA repair activity, we predicted an association between virome composition and exposure to radionuclides. To test this hypothesis, we studied the bank vole virome in samples of plasma derived from animals inhabiting areas of Ukraine (contaminated areas surrounding the former nuclear power plant at Chernobyl, and uncontaminated areas close to Kyiv) that differed in level of environmental radiation contamination. We discovered four strains of hepacivirus and four new virus sequences: two adeno-asso…
Low-level environmental metal pollution is associated with altered gut microbiota of a wild rodent, the bank vole (Myodes glareolus)
Mining and related industries are a major source of metal pollution. In contrast to the well-studied effects of ex-posure to metals on animal physiology and health, the impacts of environmental metal pollution on the gut mi-crobiota of wild animals are virtually unknown. As the gut microbiota is a key component of host health, it is important to understand whether metal pollution can alter wild animal gut microbiota composition. Using a combination of 16S rRNA amplicon sequencing and quantification of metal levels in kidneys, we assessed whether multi-metal exposure (the sum of normalized levels of fifteen metals) was associated with changes in gut microbiota of wild bank voles (Myodes glar…
Applying the Anna Karenina principle for wild animal gut microbiota: Temporal stability of the bank vole gut microbiota in a disturbed environment.
Gut microbiota play an important role in host health. Yet, the drivers and patterns of microbiota imbalance (dysbiosis) in wild animals remain largely unexplored. One hypothesised outcome of stress on animal microbiomes is a destabilised microbial community that is characterised by an increase in inter-individual differences compared with microbiomes of healthy animals, which are expected to be (a) temporally stable and (b) relatively similar among individuals. This set of predictions for response of microbiomes to stressors is known as the Anna Karenina principle (AKP) for animal microbiomes. We examine the AKP in a wild mammal inhabiting disturbed environments by conducting a capture-mark…
Low-level environmental metal pollution is associated with altered gut microbiota of a wild rodent, the bank vole (Myodes glareolus)
Mining and related industries are a major source of metal pollution. In contrast to the well-studied effects of exposure to metals on animal physiology and health, the impacts of environmental metal pollution on the gut microbiota of wild animals are virtually unknown. As the gut microbiota is a key component of host health, it is important to understand whether metal pollution can alter wild animal gut microbiota composition. Using a combination of 16S rRNA amplicon sequencing and quantification of metal levels in kidneys, we assessed whether multi-metal exposure (the sum of normalized levels of fifteen metals) was associated with changes in gut microbiota of wild bank voles (Myodes glareo…
Additional file 9: of Skin and gut microbiomes of a wild mammal respond to different environmental cues
Differences in bank vole skin microbiome beta diversity associated with environmental radiation exposure. PCoA on unweighted UniFrac distances between bank vole skin microbiome profiles among the three study areas that differ in levels of environmental radioactivity are shown along the first two PC axes. Each point represents a single sample, shape indicate host sex, coloured according to study area: CH, red (n = 64); CL, blue (n = 44); KL, green (n = 43). Ellipses represent a 95% CI around the cluster centroid. (PDF 12 kb)
Additional file 13: of Skin and gut microbiomes of a wild mammal respond to different environmental cues
Community dissimilarity between gut and skin microbiomes within each replicate site. Box-and-whisker plots represent the median and interquartile range of Bray-Curtis distance between samples. Each box plot represent contaminated (CH1-3) and uncontaminated (CL1-2) with radionuclides study areas within the Chernobyl Exclusion Zone and uncontaminated area near Kyiv (KL1-2), Ukraine. (PDF 43â kb)
Ionizing radiation from Chernobyl affects development of wild carrot plants.
AbstractRadioactivity released from disasters like Chernobyl and Fukushima is a global hazard and a threat to exposed biota. To minimize the deleterious effects of stressors organisms adopt various strategies. Plants, for example, may delay germination or stay dormant during stressful periods. However, an intense stress may halt germination or heavily affect various developmental stages and select for life history changes. Here, we test for the consequence of exposure to ionizing radiation on plant development. We conducted a common garden experiment in an uncontaminated greenhouse using 660 seeds originating from 33 wild carrots (Daucus carota) collected near the Chernobyl nuclear power pl…
Additional file 3: of Fibroblasts from bank voles inhabiting Chernobyl have increased resistance against oxidative and DNA stresses
Etoposide induces apoptosis in bank vole fibroblasts. We treated the cells with DMSO or 20 μM of etoposide for 24 h, replaced the media, and collected samples 72 h post-treatment for propidium iodide and Annexin V flow cytometry with eBioscience Annexin V apoptosis Detection kit FITC as recommended by the manufacturer. The figure shows one control and one Chernobyl cell line. The percentage of healthy cells are shown in the lower-left corner, necrotic cells in the upper-left corner, and apoptotic cells at right. (PDF 66 kb)
Additional file 1: of Fibroblasts from bank voles inhabiting Chernobyl have increased resistance against oxidative and DNA stresses
Chernobyl and control fibroblasts are able to adjust to constant exposure to small concentrations of oxidant. The oxidant was added every other day for four times before scoring the wells that were 100% confluent a day after the last exposure. The results are from three separate experiments using the eight Chernobyl (N = 24) and eight control cell lines (N = 24). Variation is shown by standard deviation. (PDF 28 kb)
Additional file 7: of Skin and gut microbiomes of a wild mammal respond to different environmental cues
Measures of alpha diversity for the skin microbiota of bank voles inhabiting areas that differ in levels of environmental radiation. Box-and-whisker plots represent the median and interquartile range of alpha diversity estimates (i.e. number of observed OTUs, Shannon index). Each box plot represent alpha diversity of the skin microbiome of bank vole females and males from contaminated (CH) and uncontaminated (CL) with radionuclides areas within the Chernobyl Exclusion Zone and uncontaminated area near Kyiv (KL), Ukraine. (PDF 8â kb)
Additional file 5: of Skin and gut microbiomes of a wild mammal respond to different environmental cues
Correlations (Spearman’s correlation analysis) between the SK microbiome alpha diversity estimates (Number of observed OTUs and Shannon index) and (a, b) the whole-body 137Cs radionuclide burden, and (c, d) the external radiation doses of sampled bank voles. All correlations were not significant. (PDF 287 kb)
Transcriptional Upregulation of DNA Damage Response Genes in Bank Voles (Myodes glareolus) Inhabiting the Chernobyl Exclusion Zone
Exposure to ionizing radiation (IR) from radionuclides released into the environment can damage DNA. An expected response to exposure to environmental radionuclides, therefore, is initiation of DNA damage response (DDR) pathways. Increased DNA damage is a characteristic of many organisms exposed to radionuclides but expression of DDR genes of wildlife inhabiting an area contaminated by radionuclides is poorly understood. We quantified expression of five central DDR genes Atm, Mre11, p53, Brca1, and p21 in the livers of the bank vole Myodes glareolus that inhabited areas within the Chernobyl Exclusion Zone (CEZ) that differed in levels of ambient radioactivity, and also from control areas ou…
Additional file 10: of Skin and gut microbiomes of a wild mammal respond to different environmental cues
Permutational MANOVA (PERMANOVA) statistical tests on unweighted UniFrac (unwUniFrac) distances and Bray-Curtis dissimilarity for skin microbial communities of bank voles inhabiting areas that differ in environmental radiation levels. (XLSX 11â kb)
Additional file 4: of Skin and gut microbiomes of a wild mammal respond to different environmental cues
Summary of skin microbiota of the Phyla, Classes, Orders, Families and Genera for wild-caught bank voles (Myodes glareolus), with significantly different relative abundances (Kruskal–Wallis tests using Dunn’s post hoc test and followed by a Benjamini-Hochberg False Discovery Rate (FDR) correction) among the study areas (e.g. CL, KL and CH). (XLSX 97 kb)
Additional file 1: of Skin and gut microbiomes of a wild mammal respond to different environmental cues
16S rRNA gene sequencing metadata. (XLSX 35â kb)
Additional file 11: of Skin and gut microbiomes of a wild mammal respond to different environmental cues
Summary of predictive accuracy of Random Forest modelling for skin and gut microbial communities of bank voles inhabiting areas that differ in environmental radiation levels. (XLSX 10â kb)
Additional file 8: of Skin and gut microbiomes of a wild mammal respond to different environmental cues
Final GLMs that show significant predictors of alpha diversity estimates within the skin microbiota of bank voles inhabiting the area within the Chernobyl Exclusion Zone (CEZ) and areas near Kyiv, Ukraine. Only significant models are shown, with significant P-values shown in bold. AIC fit criterion is given for each full model. (XLSX 12â kb)
Additional file 6: of Skin and gut microbiomes of a wild mammal respond to different environmental cues
Statistical comparison of alpha diversity estimates by Kruskal–Wallis tests using Dunn’s post hoc test and followed by a Benjamini-Hochberg False Discovery Rate (FDR) correction. (XLSX 14 kb)
Additional file 3: of Skin and gut microbiomes of a wild mammal respond to different environmental cues
Relative abundance (average of taxonomic groups abundance within each sample) of Phyla, Classes, Orders, Families or Genera for skin microbiome of wild-caught bank voles (Myodes glareolus) from contaminated (CH) and uncontaminated (CL) areas with radionuclides within the Chernobyl Exclusion Zone and uncontaminated area near Kyiv (KL), Ukraine. (XLSX 91â kb)