0000000001223516
AUTHOR
Ewald Mueller
Which physical parameters can be inferred from the emission variability of relativistic jets?
We present results of a detailed numerical study and theoretical analysis of the dynamics of internal shocks in relativistic jets and the non-thermal flares associated with these shocks. In our model internal shocks result from collisions of density inhomogeneities (shells) in relativistic jet flows. We find that the merged shell resulting from the inelastic collision of shells has a complicated internal structure due to the non-linear dynamics of the interaction. Furthermore, the instantaneous efficiency for converting kinetic energy into thermal energy is found to be almost twice as high as theoretically expected during the period of significant emission. The Lorentz factors of the intern…
Internal shocks in relativistic outflows: collisions of magnetized shells
(Abridged): We study the collision of magnetized irregularities (shells) in relativistic outflows in order to explain the origin of the generic phenomenology observed in the non-thermal emission of both blazars and gamma-ray bursts. We focus on the influence of the magnetic field on the collision dynamics, and we further investigate how the properties of the observed radiation depend on the strength of the initial magnetic field and on the initial internal energy density of the flow. The collisions of magnetized shells and the radiation resulting from these collisions are calculated using the 1D relativistic magnetohydrodynamics code MRGENESIS. The interaction of the shells with the externa…
"Mariage des Maillages": A new numerical approach for 3D relativistic core collapse simulations
We present a new 3D general relativistic hydrodynamics code for simulations of stellar core collapse to a neutron star, as well as pulsations and instabilities of rotating relativistic stars. It uses spectral methods for solving the metric equations, assuming the conformal flatness approximation for the three-metric. The matter equations are solved by high-resolution shock-capturing schemes. We demonstrate that the combination of a finite difference grid and a spectral grid can be successfully accomplished. This "Mariage des Maillages" (French for grid wedding) approach results in high accuracy of the metric solver and allows for fully 3D applications using computationally affordable resour…
Axisymmetric simulations of magnetorotational core collapse: approximate inclusion of general relativistic effects
We continue our investigations of the magnetorotational collapse of stellar cores discussing simulations performed with a modified Newtonian gravitational potential that mimics general relativistic effects. The approximate TOV potential used in our simulations catches several features of fully relativistic simulations quite well. It is able to correctly reproduce the behavior of models which show a qualitative change both of the dynamics and the gravitational wave signal when switching from Newtonian to fully relativistic simulations. If this is not the case, the Newtonian and the approximate TOV models differ quantitatively. The collapse proceeds to higher densities with the approximate TO…
Relativistic simulations of rotational core collapse : II. Collapse dynamics and gravitational radiation
We have performed hydrodynamic simulations of relativistic rotational supernova core collapse in axisymmetry and have computed the gravitational radiation emitted by such an event. Details of the methodology and of the numerical code have been given in an accompanying paper. We have simulated the evolution of 26 models in both Newtonian and relativistic gravity. Our simulations show that the three different types of rotational supernova core collapse and gravitational waveforms identified in previous Newtonian simulations (regular collapse, multiple bounce collapse, and rapid collapse) are also present in relativistic gravity. However, rotational core collapse with multiple bounces is only …
Neutrino pair annihilation near accreting, stellar-mass black holes
We investigate the energy-momentum deposition due to neutrino-antineutrino annihilation in the vicinity of axisymmetric, accreting black holes (BHs) by numerically ray-tracing neutrino trajectories in a Kerr space-time. Hyperaccreting stellar-mass BHs are widely considered as energy sources that can drive ultrarelativistic outflows with the potential to produce gamma-ray bursts. In contrast to earlier works, we provide an extensive and detailed parameter study of the influence of general relativistic (GR) effects and of different neutrinosphere geometries. These include idealized thin disks, tori, and spheres, or are constructed as non-selfgravitating equilibrium matter distributions for va…
An Exact Riemann Solver for Multidimensional Special Relativistic Hydrodynamics
We have generalised the exact solution of the Riemann problem in special relativistic hydrodynamics (Marti and Muller, 1994) for arbitrary tangential flow velocities. The solution is obtained by solving the jump conditions across shocks plus an ordinary differential equation arising from the self-similarity condition along rarefaction waves, in a similar way as in purely normal flow. This solution has been used to build up an exact Riemann solver implemented in a multidimensional relativistic (Godunov-type) hydro-code.
Relativistic simulations of rotational core collapse : I. Methods, initial models, and code tests
We describe an axisymmetric general relativistic code for rotational core collapse. The code evolves the coupled system of metric and fluid equations using the ADM 3+1 formalism and a conformally flat metric approximation of the Einstein equations. The relativistic hydrodynamics equations are formulated as a first-order flux-conservative hyperbolic system and are integrated using high-resolution shock-capturing schemes based on Riemann solvers. We assess the quality of the conformally flat metric approximation for relativistic core collapse and present a comprehensive set of tests which the code successfully passed. The tests include relativistic shock tubes, the preservation of the rotatio…
Does the plasma composition affect the long term evolution of relativistic jets?
We study the influence of the matter content of extragalactic jets on their morphology, dynamics and emission properties. For this purpose we consider jets of extremely different compositions including pure leptonic and baryonic plasmas. Our work is based on two-dimensional relativistic hydrodynamic simulations of the long-term evolution of powerful extragalactic jets propagating into a homogeneous environment. The equation of state used in the simulations accounts for an arbitrary mixture of electrons, protons and electron-positron pairs. Using the hydrodynamic models we have also computed synthetic radio maps and the thermal Bremsstrahlung X-ray emission from their cavities. Although ther…
3D Simulations of Relativistic Precessing Jets Probing the Structure of Superluminal Sources
We present the results of a three-dimensional, relativistic, hydrodynamic simulation of a precessing jet into which a compact blob of matter is injected. A comparison of synthetic radio maps computed from the hydrodynamic model, taking into account the appropriate light travel time delays, with those obtained from observations of actual superluminal sources shows that the variability of the jet emission is the result of a complex combination of phase motions, viewing angle selection effects, and non-linear interactions between perturbations and the underlying jet and/or the external medium. These results question the hydrodynamic properties inferred from observed apparent motions and radio …
CFC+: Improved dynamics and gravitational waveforms from relativistic core collapse simulations
Core collapse supernovae are a promising source of detectable gravitational waves. Most of the existing (multidimensional) numerical simulations of core collapse in general relativity have been done using approximations of the Einstein field equations. As recently shown by Dimmelmeier et al (2002a,b), one of the most interesting such approximation is the so-called conformal flatness condition (CFC) of Isenberg, Wilson and Mathews. Building on this previous work we present here new results from numerical simulations of relativistic rotational core collapse in axisymmetry, aiming at improving the dynamics and the gravitational waveforms. The computer code used for these simulations evolves th…