0000000001228692

AUTHOR

A. D. Russell

Measurement of inclusive neutral current pi(0) production on carbon in a few-GeV neutrino beam

The SciBooNE Collaboration reports inclusive neutral current neutral pion production by a muon neutrino beam on a polystyrene target (C8H8). We obtain (7.7 +/- 0.5(stat) +/- 0.5(sys)) X 10(-2) as the ratio of the neutral current neutral pion production to total charged current cross section; the mean energy of neutrinos producing detected neutral pions is 1.1 GeV. The result agrees with the Rein-Sehgal model implemented in our neutrino interaction simulation program with nuclear effects. The spectrum shape of the pi(0) momentum and angle agree with the model. We also measure the ratio of the neutral current coherent pion production to total charged current cross section to be (0.7 +/- 0.4) …

research product

Search for Charged Current Coherent Pion Production on Carbon in a Few-GeV Neutrino Beam

The SciBooNE Collaboration has performed a search for charged current coherent pion production from muon neutrinos scattering on carbon, \nu_\mu ^{12}C \to \mu^- ^{12}C \pi^+, with two distinct data samples. No evidence for coherent pion production is observed. We set 90% confidence level upper limits on the cross section ratio of charged current coherent pion production to the total charged current cross section at 0.67\times 10^{-2} at mean neutrino energy 1.1 GeV and 1.36\times 10^{-2} at mean neutrino energy 2.2 GeV.

research product

Measurement ofK+production cross section by 8 GeV protons using high-energy neutrino interactions in the SciBooNE detector

The SciBooNE Collaboration reports K+ production cross section and rate measurements using high energy daughter muon neutrino scattering data off the SciBar polystyrene (C8H8) target in the SciBooNE detector. The K+ mesons are produced by 8 GeV protons striking a beryllium target in Fermilab Booster Neutrino Beam line (BNB). Using observed neutrino and antineutrino events in SciBooNE, we measure d2σ/dpdΩ = (5.34 ±0.76) mb/(GeV/c x sr) for p + Be =K+ + X at mean K+ energy of 3.9 GeV and angle (with respect to the proton beam direction) of 3.7 degrees, corresponding to the selected K+ sample. Compared to Monte Carlo predictions using previous higher energy K+ production measurements, this mea…

research product

Measurement of neutrino-induced charged-current charged pion production cross sections on mineral oil atEν∼1  GeV

Using a high-statistics, high-purity sample of {nu}{sub {mu}-}induced charged current, charged pion events in mineral oil (CH{sub 2}), MiniBooNE reports a collection of interaction cross sections for this process. This includes measurements of the CC{pi}{sup +} cross section as a function of neutrino energy, as well as flux-averaged single- and double-differential cross sections of the energy and direction of both the final-state muon and pion. In addition, each of the single-differential cross sections are extracted as a function of neutrino energy to decouple the shape of the MiniBooNE energy spectrum from the results. In many cases, these cross sections are the first time such quantities…

research product

Measurement of the neutrino component of an anti-neutrino beam observed by a non-magnetized detector

Two independent methods are employed to measure the neutrino flux of the anti-neutrino-mode beam observed by the MiniBooNE detector. The first method compares data to simulated event rates in a high purity $\numu$ induced charged-current single $\pip$ (CC1$\pip$) sample while the second exploits the difference between the angular distributions of muons created in $\numu$ and $\numub$ charged-current quasi-elastic (CCQE) interactions. The results from both analyses indicate the prediction of the neutrino flux component of the pre-dominately anti-neutrino beam is over-estimated - the CC1$\pip$ analysis indicates the predicted $\numu$ flux should be scaled by $0.76 \pm 0.11$, while the CCQE an…

research product

Measurement ofνμandν¯μinduced neutral current singleπ0production cross sections on mineral oil atEν∼O(1 GeV)

MiniBooNE reports the first absolute cross sections for neutral current single {pi}{sup 0} production on CH{sub 2} induced by neutrino and antineutrino interactions measured from the largest sets of NC {pi}{sup 0} events collected to date. The principal result consists of differential cross sections measured as functions of {pi}{sup 0} momentum and {pi}{sup 0} angle averaged over the neutrino flux at MiniBooNE. We find total cross sections of (4.76 {+-} 0.05{sub stat} {+-} 0.40{sub sys}) x 10{sup -40} cm{sup 2}/nucleon at a mean energy of = 808 MeV and (1.48 {+-} 0.05{sub stat} {+-} 0.14{sub sys}) x 10{sup -40} cm{sup 2}/nucleon at a mean energy of = 664 MeV for {nu}{sub {mu}} and {bar {nu}…

research product

Measurement ofνμ-induced charged-current neutral pion production cross sections on mineral oil atEν∈0.5–2.0  GeV

The authors would like to acknowledge the support of Fermilab, the Department of Energy, and the National Science Foundation in the construction, operation, and data analysis of the Mini Booster Neutrino Experiment.

research product

Dual baseline search for muon neutrino disappearance at0.5  eV2<Δm2<40  eV2

The SciBooNE and MiniBooNE collaborations report the results of a νμ disappearance search in the Δ'm2 region of 0.5-40 eV2. The neutrino rate as measured by the SciBooNE tracking detectors is used to constrain the rate at the MiniBooNE Cherenkov detector in the first joint analysis of data from both collaborations. Two separate analyses of the combined data samples set 90% confidence level (CL) limits on νμ disappearance in the 0.5-40 eV2 Δm2 region, with an improvement over previous experimental constraints between 10 and 30 eV2

research product

Measurement of the Ratio of theνμCharged-Current Single-Pion Production to Quasielastic Scattering with a 0.8 GeV Neutrino Beam on Mineral Oil

Charged current single pion production (CC{pi}{sup +}) and charged current quasi-elastic scattering (CCQE) are the most abundant interaction types for neutrinos at energies around 1 GeV, a region of great interest to oscillation experiments. The cross-sections for these processes, however, are not well understood in this energy range. This dissertation presents a measurement of the ratio of CC{pi}{sup +} to CCQE cross-sections for muon neutrinos on mineral oil (CH{sub 2}) in the MiniBooNE experiment. The measurement is presented here both with and without corrections for hadronic re-interactions in the target nucleus and is given as a function of neutrino energy in the range 0.4 GeV < E{sub…

research product

Search for Core-Collapse Supernovae using the MiniBooNE Neutrino Detector

We present a search for core-collapse supernovae in the Milky Way galaxy, using the MiniBooNE neutrino detector. No evidence is found for core-collapse supernovae occurring in our Galaxy in the period from December 14, 2004 to July 31, 2008, corresponding to 98% live time for collection. We set a limit on the core-collapse supernova rate out to a distance of 13.4 kpc to be less than 0.69 supernovae per year at 90% C. L.

research product

Test of Lorentz and CPT violation with short baseline neutrino oscillation excesses

The sidereal time dependence of MiniBooNE ν[subscript e] and ν[over-bar][subscript e] appearance data is analyzed to search for evidence of Lorentz and CPT violation. An unbinned Kolmogorov–Smirnov (K–S) test shows both the ν[subscript e] and ν[over-bar][subscript e] appearance data are compatible with the null sidereal variation hypothesis to more than 5%. Using an unbinned likelihood fit with a Lorentz-violating oscillation model derived from the Standard Model Extension (SME) to describe any excess events over background, we find that the ν[subscript e] appearance data prefer a sidereal time-independent solution, and the ν[over-bar][subscript e] appearance data slightly prefer a sidereal…

research product

Search for Electron Antineutrino Appearance at theΔm2∼1  eV2Scale

The MiniBooNE Collaboration reports initial results from a search for nu{sub m}u->nu{sub e} oscillations. A signal-blind analysis was performed using a data sample corresponding to 3.39x10{sup 20} protons on target. The data are consistent with background prediction across the full range of neutrino energy reconstructed assuming quasielastic scattering, 200<E{sub n}u{sup QE}<3000 MeV: 144 electronlike events have been observed in this energy range, compared to an expectation of 139.2+-17.6 events. No significant excess of events has been observed, both at low energy, 200-475 MeV, and at high energy, 475-1250 MeV. The data are inconclusive with respect to antineutrino oscillations suggested …

research product

Measurement of the neutrino neutral-current elastic differential cross section on mineral oil atEν∼1  GeV

We report a measurement of the flux-averaged neutral-current elastic differential cross section for neutrinos scattering on mineral oil (CH{sub 2}) as a function of four-momentum transferred squared, Q{sup 2}. It is obtained by measuring the kinematics of recoiling nucleons with kinetic energy greater than 50 MeV which are readily detected in MiniBooNE. This differential cross-section distribution is fit with fixed nucleon form factors apart from an axial mass M{sub A} that provides a best fit for M{sub A}=1.39{+-}0.11 GeV. Using the data from the charged-current neutrino interaction sample, a ratio of neutral-current to charged-current quasielastic cross sections as a function of Q{sup 2} …

research product

Event Excess in the MiniBooNE Search forν¯μ→ν¯eOscillations

The MiniBooNE experiment at Fermilab reports results from a search for {nu}{sub {mu}{yields}{nu}e} oscillations, using a data sample corresponding to 5.66x10{sup 20} protons on target. An excess of 20.9{+-}14.0 events is observed in the energy range 475<E{sub {nu}}{sup QE}<1250 MeV, which, when constrained by the observed {nu}{sub {mu}} events, has a probability for consistency with the background-only hypothesis of 0.5%. On the other hand, fitting for {nu}{sub {mu}{yields}{nu}e} oscillations, the best-fit point has a {chi}{sup 2} probability of 8.7%. The data are consistent with {nu}{sub {mu}{yields}{nu}e} oscillations in the 0.1 to 1.0 eV{sup 2} {Delta}m{sup 2} range and with the evidence…

research product

Improved measurement of neutral current coherent pi(0) production on carbon in a few-GeV neutrino beam

The SciBooNE Collaboration reports a measurement of neutral current coherent pi(0) production on carbon by a muon neutrino beam with average energy 0.8 GeV. The separation of coherent from inclusive pi(0) production has been improved by detecting recoil protons from resonant pi(0) production. We measure the ratio of the neutral current coherent pi(0) production to total charged current cross sections to be 1.16 +/- 0.24) x 10(-2). The ratio of charged current coherent pi(+) to neutral current coherent pi(0) production is calculated to be 0.14(-0.28)(+0.30), using our published charged current coherent pion measurement.

research product

Search for Muon Neutrino and Antineutrino Disappearance in MiniBooNE

The MiniBooNE Collaboration reports a search for nu(mu) and nu(mu) disappearance in the Delta m(2) region of 0.5-40 eV(2). These measurements are important for constraining models with extra types of neutrinos, extra dimensions, and CPT violation. Fits to the shape of the nu(mu) and nu(mu) energy spectra reveal no evidence for disappearance at the 90% confidence level (C.L.) in either mode. The test of nu(mu) disappearance probes a region below Delta m(2)=40 eV(2) never explored before.

research product

Neutrino flux prediction at MiniBooNE

The booster neutrino experiment (MiniBooNE) searches for nu(mu)->nu(e) oscillations using the O(1 GeV) neutrino beam produced by the booster synchrotron at the Fermi National Accelerator Laboratory). The booster delivers protons with 8 GeV kinetic energy (8.89 GeV/c momentum) to a beryllium target, producing neutrinos from the decay of secondary particles in the beam line. We describe the Monte Carlo simulation methods used to estimate the flux of neutrinos from the beam line incident on the MiniBooNE detector for both polarities of the focusing horn. The simulation uses the Geant4 framework for propagating particles, accounting for electromagnetic processes and hadronic interactions in the…

research product

Unexplained Excess of Electronlike Events from a 1-GeV Neutrino Beam

The MiniBooNE Collaboration observes unexplained electronlike events in the reconstructed neutrino energy range from 200 to 475 MeV. With 6.46 x 10(20) protons on target, 544 electronlike events are observed in this energy range, compared to an expectation of 415.2 +/- 43.4 events, corresponding to an excess of 128.8 +/- 20.4 +/- 38.3 events. The shape of the excess in several kinematic variables is consistent with being due to either nu(e) and (nu) over bar (e) charged-current scattering or nu(mu) neutral-current scattering with a photon in the final state. No significant excess of events is observed in the reconstructed neutrino energy range from 475 to 1250 MeV, where 408 events are obse…

research product

Measurement of inclusive charged current interactions on carbon in a few-GeV neutrino beam

We report a measurement of inclusive charged current interactions of muon neutrinos on carbon with an average energy of 0.8 GeV using the Fermilab Booster Neutrino Beam. We compare our measurement with two neutrino interaction simulations: NEUT and NUANCE. The charged current interaction rates (product of flux and cross section) are extracted by fitting the muon kinematics, with a precision of 6%-15% for the energy dependent and 3% for the energy integrated analyses. We also extract charged current inclusive interaction cross sections from the observed rates, with a precision of 10%-30% for the energy dependent and 8% for the energy integrated analyses. This is the first measurement of the …

research product