0000000001233789
AUTHOR
Mustapha Laatiaoui
Chemical studies of Fl (element 114): Heaviest chemically studied element
Direct detection of the 229Th nuclear clock transition
Today’s most precise time and frequency measurements are performed with optical atomic clocks. However, it has been proposed that they could potentially be outperformed by a nuclear clock, which employs a nuclear transition instead of an atomic shell transition. There is only one known nuclear state that could serve as a nuclear clock using currently available technology, namely, the isomeric first excited state of 229Th (denoted 229mTh). Here we report the direct detection of this nuclear state, which is further confirmation of the existence of the isomer and lays the foundation for precise studies of its decay parameters. On the basis of this direct detection, the isomeric energy is const…
Exploiting transport properties for the detection of optical pumping in heavy ions
We present a kinetic model for optical pumping in Lu$^+$ and Lr$^+$ ions as well as a theoretical approach to calculate the transport properties of Lu$^+$ in its ground $^1S_0$ and metastable $^3D_1$ states in helium background gas. Calculations of the initial ion state populations, the field and temperature dependence of the mobilities and diffusion coefficients, and the ion arrival time distributions demonstrate that the ground- and metastable-state ions can be collected and discriminated efficiently under realistic macroscopic conditions.
Electronic Structure of Lr+ (Z = 103) from Ab Initio Calculations
Atoms 10(2), 48 (2022). doi:10.3390/atoms10020048
Spontaneous fission of rutherfordium isotopes - total kinetic energies
The isotopes 255,256,258Rf were produced in the fusion-evaporation reactions 50Ti + 207,208Pb and 50Ti + 209Bi at GSI Darmstadt, using the velocity filter SHIP. Total kinetic energies of fragments from spontaneous fission for these isotopes were evaluated with a correction to pulse-height defect.
Opportunities and limitations of in-gas-cell laser spectroscopy of the heaviest elements with RADRIS
International audience; The radiation detection resonance ionization spectroscopy (RADRIS) technique enables laser spectroscopic investigations of the heaviest elements which are produced in atom-at-a-time quantities from fusion-evaporation reactions. To achieve a high efficiency, laser spectroscopy is performed in a buffer-gas environment used to thermalize and stop the high-energy evaporation residues behind the velocity filter SHIP. The required cyclic measurement procedure in combination with the applied filament collection for neutralization as well as confinement of the stopped ions and subsequent pulse-heat desorption constrains the applicability of the technique. Here, some of these…
A Progress Report on Laser Resonance Chromatography
Atoms 10(3), 87 (2022). doi:10.3390/atoms10030087
Electronic structure of Rf + ( Z = 104 ) from ab initio calculations
We report calculation of the energy spectrum and the spectroscopic properties of the superheavy element ion: Rf+. We use the four-component relativistic Dirac-Coulomb Hamiltonian and the multireference configuration interaction model to tackle the complex electronic structure problem that combines strong relativistic effects and electron correlation. We determine the energies of the ground and the low-lying excited states of Rf+, which originate from the 7s26d1,7s16d2,7s27p1, and 7s16d17p1 configurations. The results are discussed vis-à-vis the lighter homolog Hf+ ion. We also assess the uncertainties of the predicted energy levels. The main purpose of the presented calculations is to provi…
Advancing Radiation-Detected Resonance Ionization towards Heavier Elements and More Exotic Nuclides
Atoms 10(2), 41 (2022). doi:10.3390/atoms10020041
New Developments in the Production and Research of Actinide Elements
Atoms 10(2), 61 (2022). doi:10.3390/atoms10020061
Mobility of the Singly-Charged Lanthanide and Actinide Cations: Trends and Perspectives
The current status of gaseous transport studies of the singly-charged lanthanide and actinide ions is reviewed in light of potential applications to superheavy ions. The measurements and calculations for the mobility of lanthanide ions in He and Ar agree well, and they are remarkably sensitive to the electronic configuration of the ion, namely, whether the outer electronic shells are 6s, 5d6s or 6s$^2$. The previous theoretical work is extended here to ions of the actinide family with zero electron orbital momentum: Ac$^+$ (7s$^2$, $^1$S), Am$^+$ (5f$^7$7s $^9$S$^\circ$), Cm$^+$ (5f$^7$7s$^2$ $^8$S$^\circ$), No$^+$ (5f$^{14}$7s $^2$S) and Lr$^+$ (5f$^{14}$7s$^2$ $^1$S). The calculations rev…
Atom-at-a-time laser resonance ionization spectroscopy of nobelium
Resonance ionization spectroscopy of nobelium (atomic number 102) reveals its ground-state transition and an upper limit for its ionization potential, paving the way to characterizing even heavier elements via optical spectroscopy. Characterizing the heaviest elements in the periodic table is a gruelling task because they are radioactive, exist only for split seconds at a time and need to be artificially produced in sufficient quantities by complicated procedures. The heaviest element that has been characterized by optical spectroscopy is fermium, which has an atomic number of 100. Mustapha Laatiaoui et al. extend the methods used for fermium to perform optical spectroscopy on nobelium (ato…
Ca-48+Bk-249 Fusion Reaction Leading to Element Z=117: Long-Lived alpha-Decaying (270)Db and Discovery of Lr-266
The superheavy element with atomic number Z=117 was produced as an evaporation residue in the 48Ca+249Bk fusion reaction at the gas-filled recoil separator TASCA at GSI Darmstadt, Germany. The radioactive decay of evaporation residues and their α-decay products was studied using a detection setup that allowed measuring decays of single atomic nuclei with half-lives between sub-μs and a few days. Two decay chains comprising seven α decays and a spontaneous fission each were identified and are assigned to the isotope 294117 and its decay products. A hitherto unknown α-decay branch in 270Db (Z=105) was observed, which populated the new isotope 266Lr (Z=103). The identification of the long-live…
TASCAを用いたCn, Nh, Fl化学実験のためのHg, Tl, PbのSiO2及びAu表面に対するオンライン化学吸着研究
Online gas-solid adsorption studies with single atom quantities of Hg, Tl, and Pb on SiO$_{2}$ and Au surfaces were carried out using short-lived radioisotopes with half-lives in the range of 4-49 s. This is a model study to measure adsorption enthalpies of superheavy elements Cn, Nh, and Fl. The short-lived isotopes were produced and separated by the gas-filled recoil separator TASCA at GSI. The products were stopped in He gas, and flushed into gas chromatography columns made of Si detectors whose surfaces were covered by SiO$_{2}$ or Au. The short-lived Tl and Pb were successfully measured by the Si detectors with the SiO$_{2}$ surface at room temperature. On the other hand, the Hg did no…
Study of the radiative decay of the low-energy isomer in ${}^{229}$Th
Recent progress in laser spectroscopy of the actinides
The interest to perform laser spectroscopy in the heaviest elements arises from the strong impact of relativistic effects, electron correlations and quantum electrodynamics on their atomic structure. Once this atomic structure is well understood, laser spectroscopy also provides access to nuclear properties such as spins, mean square charge radii and electromagnetic moments in a nuclear-model independent way. This is of particular interest for the heaviest actinides around $N = 152$, a region of shell stabilized deformed nuclei. The experimental progress of laser spectroscopy in this region benefitted from continuous methodological and technical developments such as the introduction of buff…
Resolution Characterizations of JetRIS in Mainz Using 164Dy
Atoms 10(2), 57 (2022). doi:10.3390/atoms10020057
Impact of buffer gas quenching on the $^1S_0$ $\to$ $^1P_1$ ground-state atomic transition in nobelium
International audience; Using the sensitive Radiation Detected Resonance Ionization Spectroscopy (RADRIS) techniquean optical transition in neutral nobelium (No, Z = 102) was identified. A remnant signal when delaying the ionizing laser indicated the influence of a strong buffer gas induced de-excitation of the optically populated level. A subsequent investigation of the chemical homologue, ytterbium (Yb, Z = 70), enabled a detailed study of the atomic levels involved in this process, leading to the development of a rate equation model. This paves the way for characterizing resonance ionization spectroscopy (RIS) schemes used in the studyof nobelium and beyond, where atomic properties are c…