0000000001234019
AUTHOR
Pierfrancesco Buonsante
Ground-state fidelity and bipartite entanglement in the Bose-Hubbard model.
We analyze the quantum phase transition in the Bose-Hubbard model borrowing two tools from quantum-information theory, i.e. the ground-state fidelity and entanglement measures. We consider systems at unitary filling comprising up to 50 sites and show for the first time that a finite-size scaling analysis of these quantities provides excellent estimates for the quantum critical point.We conclude that fidelity is particularly suited for revealing a quantum phase transition and pinning down the critical point thereof, while the success of entanglement measures depends on the mechanisms governing the transition.
Dipolar bosons on an optical lattice ring
We consider an ultra-small system of polarized bosons on an optical lattice with a ring topology interacting via long range dipole-dipole interactions. Dipoles polarized perpendicular to the plane of the ring reveal sharp transitions between different density wave phases. As the strength of the dipolar interactions is varied the behavior of the transitions is first-order like. For dipoles polarized in the plane of the ring the transitions between possible phases show pronounced sensitivity to the lattice depth. The abundance of possible configurations may be useful for quantum information applications.
Dynamical bifurcation as a semiclassical counterpart of a quantum phase transition
We illustrate how dynamical transitions in nonlinear semiclassical models can be recognized as phase transitions in the corresponding -- inherently linear -- quantum model, where, in a Statistical Mechanics framework, the thermodynamic limit is realized by letting the particle population go to infinity at fixed size. We focus on lattice bosons described by the Bose-Hubbard (BH) model and Discrete Self-Trapping (DST) equations at the quantum and semiclassical level, respectively. After showing that the gaussianity of the quantum ground states is broken at the phase transition, we evaluate finite populations effects introducing a suitable scaling hypothesis; we work out the exact value of the…
Quantum Criticality in a Bosonic Josephson Junction
In this paper we consider a bosonic Josephson junction described by a two-mode Bose-Hubbard model, and we thoroughly analyze a quantum phase transition occurring in the system in the limit of infinite bosonic population. We discuss the relation between this quantum phase transition and the dynamical bifurcation occurring in the spectrum of the Discrete Self Trapping equations describing the system at the semiclassical level. In particular, we identify five regimes depending on the strength of the effective interaction among bosons, and study the finite-size effects arising from the finiteness of the bosonic population. We devote a special attention to the critical regime which reduces to th…
Transport and Scaling in Quenched 2D and 3D L\'evy Quasicrystals
We consider correlated L\'evy walks on a class of two- and three-dimensional deterministic self-similar structures, with correlation between steps induced by the geometrical distribution of regions, featuring different diffusion properties. We introduce a geometric parameter $\alpha$, playing a role analogous to the exponent characterizing the step-length distribution in random systems. By a {\it single-long jump} approximation, we analytically determine the long-time asymptotic behavior of the moments of the probability distribution, as a function of $\alpha$ and of the dynamic exponent $z$ associated to the scaling length of the process. We show that our scaling analysis also applies to e…
Quantum signatures of the self-trapping transition in attractive lattice bosons
We consider the Bose-Hubbard model describing attractive bosonic particles hopping across the sites of a translation-invariant lattice, and compare the relevant ground-state properties with those of the corresponding symmetry-breaking semiclassical nonlinear theory. The introduction of a suitable measure allows us to highlight many correspondences between the nonlinear theory and the inherently linear quantum theory, characterized by the well-known self-trapping phenomenon. In particular we demonstrate that the localization properties and bifurcation pattern of the semiclassical ground-state can be clearly recognized at the quantum level. Our analysis highlights a finite-number effect.