0000000001235840

AUTHOR

Tuomas P. Rossi

showing 10 related works from this author

Kohn-Sham Decomposition in Real-Time Time-Dependent Density-Functional Theory An Efficient Tool for Analyzing Plasmonic Excitations

2017

The real-time-propagation formulation of time-dependent density-functional theory (RT-TDDFT) is an efficient method for modeling the optical response of molecules and nanoparticles. Compared to the widely adopted linear-response TDDFT approaches based on, e.g., the Casida equations, RT-TDDFT appears, however, lacking efficient analysis methods. This applies in particular to a decomposition of the response in the basis of the underlying single-electron states. In this work, we overcome this limitation by developing an analysis method for obtaining the Kohn-Sham electron-hole decomposition in RT-TDDFT. We demonstrate the equivalence between the developed method and the Casida approach by a be…

plasmonic excitationsTheoretical computer scienceKohn-Sham decompositionComputer scienceta221Kohn–Sham equationsFOS: Physical sciencesPhysics::Optics02 engineering and technology01 natural sciencesPhysics - Chemical Physics0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Decomposition (computer science)Physics::Atomic and Molecular ClustersStatistical physicsPhysical and Theoretical ChemistryPhysics::Chemical Physics010306 general physicsta116PlasmonEigenvalues and eigenvectorsChemical Physics (physics.chem-ph)Condensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale Physicsta114tiheysfunktionaaliteoriaMaterials Science (cond-mat.mtrl-sci)Time-dependent density functional theory16. Peace & justice021001 nanoscience & nanotechnologyComputer Science ApplicationsplasmonitBenzene derivativesnanohiukkaset0210 nano-technologyJOURNAL OF CHEMICAL THEORY AND COMPUTATION
researchProduct

Plasmon-Induced Direct Hot-Carrier Transfer at Metal-Acceptor Interfaces.

2019

Plasmon-induced hot-carrier transfer from a metal nanostructure to an acceptor is known to occur via two key mechanisms: (i) indirect transfer, where the hot carriers are produced in the metal nanostructure and subsequently transferred to the acceptor, and (ii) direct transfer, where the plasmons decay by directly exciting carriers from the metal to the acceptor. Unfortunately, an atomic-level understanding of the direct-transfer process, especially with regard to its quantification, remains elusive even though it is estimated to be more efficient compared to the indirect-transfer process. This is due to experimental challenges in separating direct from indirect transfer as both processes o…

NanostructureMaterials scienceprobabilityta221General Physics and Astronomyhot holes02 engineering and technology010402 general chemistry01 natural scienceslaw.inventionMetalnanorakenteetpuolijohteetlawTransfer (computing)General Materials SciencePlasmonta114nanoelektroniikkatiheysfunktionaaliteoriaGeneral Engineeringplasmon decayTime-dependent density functional theory021001 nanoscience & nanotechnologyLaserAcceptortime-dependent density-functional theory0104 chemical sciencesdirect transferChemical physicsvisual_artFemtosecondvisual_art.visual_art_mediumtodennäköisyys0210 nano-technologyhot electronsACS nano
researchProduct

Ultrastrong Coupling of a Single Molecule to a Plasmonic Nanocavity: A First-Principles Study

2022

| openaire: EC/H2020/838996/EU//RealNanoPlasmon Funding Information: We acknowledge financial support from the Swedish Research Council (VR Miljö, Grant No: 2016-06059), the Knut and Alice Wallenberg Foundation (Grant No: 2019.0140), the Polish National Science Center (projects 2019/34/E/ST3/00359 and 2019/35/B/ST5/02477). T.P.R. acknowledges support from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement No. 838996 and support from the Academy of Finland under the Grant No. 332429. T.J.A. acknowledges support from the Project HPC-EUROPA3 (INFRAIA-2016-1-730897), with the support of the EC Research Innovation Action under the H…

Other Physics TopicsexcitonsAtom and Molecular Physics and OpticstiheysfunktionaaliteoriaCondensed Matter PhysicsAtomic and Molecular Physics and OpticsplasmonicsElectronic Optical and Magnetic Materialstime-dependent density functional theorynanorakenteetfotoniikkaplasmoniikkastrong couplingnanophotonicsElectrical and Electronic EngineeringBiotechnology
researchProduct

Direct hot-carrier transfer in plasmonic catalysis

2019

Plasmonic metal nanoparticles can concentrate optical energy and enhance chemical reactions on their surfaces. Plasmons can interact with adsorbate orbitals and decay by directly exciting a carrier from the metal to the adsorbate in a process termed the direct-transfer process. Although this process could be useful for enhancing the efficiency of a chemical reaction, it remains poorly understood. Here, we report a preliminary investigation employing time-dependent density-functional theory (TDDFT) calculations to capture this process at a model metal-adsorbate interface formed by a silver nanoparticle (Ag147) and a carbon monoxide molecule (CO). Direct hot-electron transfer is observed to o…

Materials sciencePhysics::Optics02 engineering and technologyTime-dependent density functional theory010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesChemical reactionSilver nanoparticle0104 chemical sciencesCatalysisCondensed Matter::Materials ScienceAdsorptionChemical physicsMoleculeMolecular orbitalPhysics::Chemical PhysicsPhysical and Theoretical Chemistry0210 nano-technologyPlasmonFaraday Discussions
researchProduct

Localized surface plasmon resonance in silver nanoparticles: Atomistic first-principles time-dependent density-functional theory calculations

2015

We observe using ab initio methods that localized surface plasmon resonances in icosahedral silver nanoparticles enter the asymptotic region already between diameters of 1 and 2 nm, converging close to the classical quasistatic limit around 3.4 eV. We base the observation on time-dependent density-functional theory simulations of the icosahedral silver clusters Ag$_{55}$ (1.06 nm), Ag$_{147}$ (1.60 nm), Ag$_{309}$ (2.14 nm), and Ag$_{561}$ (2.68 nm). The simulation method combines the adiabatic GLLB-SC exchange-correlation functional with real time propagation in an atomic orbital basis set using the projector-augmented wave method. The method has been implemented for the electron structure…

silver nanoparticlesMaterials scienceta221Ab initioFOS: Physical sciencesMetal nanoparticlesMolecular physicsAtomic orbitalTime-dependent density functional theorySurface plasmon resonanceta116ta218Basis setPlasmonCondensed Matter - Materials Scienceta214ta114Condensed matter physicsMaterials Science (cond-mat.mtrl-sci)Time-dependent density functional theoryCondensed Matter PhysicsNanoshellElectronic Optical and Magnetic MaterialsPlasmonicssurface plasmon resonanceLocalized surface plasmonPhysical Review B
researchProduct

Plasmon Excitations in Mixed Metallic Nanoarrays

2019

Features of the surface plasmon from macroscopic materials emerge in molecular systems, but differentiating collective excitations from single-particle excitations in molecular systems remains elusive. The rich interactions between single-particle electron-hole and collective electron excitations produce phenomena related to the chemical physics aspects within the atomic array. We study the plasmonic properties of atomic arrays of noble (Au, Ag, and Cu) and transition-metal (Pd, Pt) homonuclear chains using time-dependent density functional theory and their Kohn-Sham transition contributions. The response to the electromagnetic radiation is related to both the geometry-dependent confinement…

Materials scienceGeneral Physics and AstronomyFOS: Physical sciences02 engineering and technologyElectronoptiset ominaisuudet01 natural sciencesMolecular physicsElectromagnetic radiationHomonuclear moleculeplasmonicsnanorakenteet0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Physics::Atomic and Molecular Clusterstransition contribution mapsGeneral Materials ScienceSurface plasmon resonance010306 general physicsPlasmonCondensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale Physicsta114Surface plasmontiheysfunktionaaliteoriaGeneral EngineeringMaterials Science (cond-mat.mtrl-sci)molecular plasmonics021001 nanoscience & nanotechnologytime-dependent density-functional theorytime-dependent density functional theorycollective excitationQuasiparticleDensity functional theory0210 nano-technology
researchProduct

Plasmon excitations in chemically heterogeneous nanoarrays

2020

| openaire: EC/H2020/838996/EU//RealNanoPlasmon The capability of collective excitations, such as localized surface plasmon resonances, to produce a versatile spectrum of optical phenomena is governed by the interactions within the collective and single-particle responses in the finite system. In many practical instances, plasmonic metallic nanoparticles and arrays are either topologically or chemically heterogeneous, which affects both the constituent transitions and their interactions. Here, the formation of collective excitations in weakly Cu- and Pd-doped Au nanoarrays is described using time-dependent density functional theory. The additional impurity-induced modes in the optical respo…

PhysicsNanostructureAtom and Molecular Physics and Opticstiheysfunktionaaliteoria02 engineering and technologyCondensed Matter Physics021001 nanoscience & nanotechnology01 natural scienceskvasihiukkasetplasmonitOptical phenomenananorakenteetImpurityChemical physics0103 physical sciencesQuasiparticleDensity functional theorynanohiukkaset010306 general physics0210 nano-technologyQuantumPlasmonLocalized surface plasmon
researchProduct

Hot-Carrier Generation in Plasmonic Nanoparticles: The Importance of Atomic Structure

2020

Metal nanoparticles are attractive for plasmon-enhanced generation of hot carriers, which may be harnessed in photochemical reactions. In this work, we analyze the coherent femtosecond dynamics of photon absorption, plasmon formation, and subsequent hot-carrier generation through plasmon dephasing using first-principles simulations. We predict the energetic and spatial hot-carrier distributions in small metal nanoparticles and show that the distribution of hot electrons is very sensitive to the local structure. Our results show that surface sites exhibit enhanced hot-electron generation in comparison to the bulk of the nanoparticle. While the details of the distribution depend on particle s…

Materials scienceDephasingAtom and Molecular Physics and OpticsFOS: Physical sciencesGeneral Physics and AstronomyNanoparticlePhysics::Optics02 engineering and technology010402 general chemistry01 natural sciencesAtomic unitsArticleplasmon dephasingPhysics - Chemical PhysicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)General Materials ScienceAbsorption (electromagnetic radiation)Plasmonatomic-scaleatomic scaleChemical Physics (physics.chem-ph)Plasmonic nanoparticlesCondensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale Physicslocalized surface plasmonGeneral EngineeringMaterials Science (cond-mat.mtrl-sci)plasmon decay021001 nanoscience & nanotechnologyCondensed Matter Physicstime-dependent density-functional theory0104 chemical sciencespintaplasmonitplasmonittime-dependent density functional theoryChemical physicsFemtosecondnanohiukkasetAstrophysics::Earth and Planetary Astrophysicshot carriers0210 nano-technologyhot electronsLocalized surface plasmon
researchProduct

Dipolar coupling of nanoparticle-molecule assemblies: An efficient approach for studying strong coupling

2021

Strong light-matter interactions facilitate not only emerging applications in quantum and non-linear optics but also modifications of materials properties. In particular the latter possibility has spurred the development of advanced theoretical techniques that can accurately capture both quantum optical and quantum chemical degrees of freedom. These methods are, however, computationally very demanding, which limits their application range. Here, we demonstrate that the optical spectra of nanoparticle-molecule assemblies, including strong coupling effects, can be predicted with good accuracy using a subsystem approach, in which the response functions of the different units are coupled only a…

Degrees of freedom (statistics)General Physics and AstronomyNanoparticleFOS: Physical sciences010402 general chemistryoptiset ominaisuudet01 natural scienceslinear combination of atomic orbitalstime dependent density functional theorynanorakenteet0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)MoleculePhysical and Theoretical Chemistryoptical spectroscopyQuantumPhysicssurface optics010304 chemical physicsCondensed Matter - Mesoscale and Nanoscale Physicstiheysfunktionaaliteoriapolarizability0104 chemical sciencesplasmonitRange (mathematics)DipoleChemical physicsDensity functional theorynanoparticlesnanohiukkasetplasmonsMagnetic dipole–dipole interaction
researchProduct

Real-time time-dependent density functional theory implementation of electronic circular dichroism applied to nanoscale metal–organic clusters

2020

| openaire: EC/H2020/838996/EU//RealNanoPlasmon Electronic circular dichroism (ECD) is a powerful spectroscopy method for investigating chiral properties at the molecular level. ECD calculations with the commonly used linear-response time-dependent density functional theory (LR-TDDFT) framework can be prohibitively costly for large systems. To alleviate this problem, we present here an ECD implementation within the projector augmented-wave method in a real-time-propagation TDDFT framework in the open-source GPAW code. Our implementation supports both local atomic basis sets and real-space finite-difference representations of wave functions. We benchmark our implementation against an existin…

Chemical Physics (physics.chem-ph)Condensed Matter - Materials Sciencemagneettiset ominaisuudetCondensed Matter - Mesoscale and Nanoscale PhysicsspektroskopiatiheysfunktionaaliteoriaMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesorganometalliyhdisteetoptiset ominaisuudetPhysics - Chemical PhysicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)Physics::Atomic and Molecular Clustersnanohiukkaset
researchProduct