0000000001237314

AUTHOR

L. Burderi

showing 25 related works from this author

Constraints on the neutron star magnetic fields in Low Mass X-ray Binaries

2005

researchProduct

Accretion and Magneto-Dipole Emission in Fast-Rotating Neutron Stars: New Spin-Equilibrium Lines

2005

researchProduct

BeppoSAX discovery of a new X-ray pulsar

2004

researchProduct

Timing of accreting millisecond pulsars

2008

We review recent results from the X-ray timing of accreting millisecond pulsars in LMXBs. This is the first time a timing analysis is performed on accreting millisecond pulsars, and for the first time we can obtain information on the behavior of a very fast pulsar subject to accretion torques. We find both spin-up and spin-down behaviors, from which, using available models for the accretion torques, we derive information on the mass accretion rate and magnetic field of the neutron star in these systems. We also report here the first measure of the orbital period derivative for an accreting millisecond pulsar, derived for SAX J1808.4-3658 over a timespan of more 7 years.

PhysicsAccretion and accretion disks Pulsars Neutron stars X-ray binaries Magnetic and electric fieldAstrophysics::High Energy Astrophysical PhenomenaX-ray binaryStatic timing analysisAstronomyAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicspolarization of starlightOrbital periodAccretion (astrophysics)Neutron starSettore FIS/05 - Astronomia E AstrofisicaPulsarMillisecond pulsarAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsAstrophysics::Galaxy AstrophysicsX-ray pulsarAIP Conference Proceedings
researchProduct

Evolution in Recycling Scenario

2011

The recycling model argues the existence of an evolutionary connection between low mass X-ray binaries and radio millisecond pulsars. The main difficulties which this model finds in predict the parameters of the fully recycled millisecond pulsars, as mass and spin period, can be overcome by the onset of the so-called radio-ejection mechanism. This work is to provide observational support to the radio-ejection mechanism by inspecting the orbital and spin parameters of the known population of fully recycled radio pulsars and compare these with the expectation for the occurrence of this mechanism.

X-raySettore FIS/05 - Astronomia E Astrofisicabinaryneutron starpulsarAIP Conference Proceedings
researchProduct

Localisation of gamma-ray bursts from the combined SpIRIT+HERMES-TP/SP nano-satellite constellation

2023

Multi-messenger observations of the transient sky to detect cosmic explosions and counterparts of gravitational wave mergers critically rely on orbiting wide-FoV telescopes to cover the wide range of wavelengths where atmospheric absorption and emission limit the use of ground facilities. Thanks to continuing technological improvements, miniaturised space instruments operating as distributed-aperture constellations are offering new capabilities for the study of high energy transients to complement ageing existing satellites. In this paper we characterise the performance of the upcoming joint SpIRIT + HERMES-TP/SP nano-satellite constellation for the localisation of high-energy transients th…

Gamma ray transient sourceHigh Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceX-ray transient sourceSpace telescopeTime domain astronomyFOS: Physical sciencesAstronomy and AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for AstrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)
researchProduct

A relativistically broadened iron line from an Accreting Millisecond Pulsar

2010

The capabilities of XMM-Newton have been fully exploited to detect a broadened iron Kα emission line from the 2.5 ms Accreting Millisecond Pulsar, SAX J1808.4-3658. The energy of the transition is compatible with fluorescence from neutral/lowly ionized iron. The observed large width (FWHM more than 1 keV) can be explained through Doppler and relativistic broadening from the inner rings of an accretion disc close to the NS. From a fit of the line shape with a diskline model we obtain an estimate of the inner disc radius of 18.0-5.6+7.6km for a 1.4 M⊙ neutron star. The disc is therefore truncated inside the corotation radius (31 km for SAX J1808.4-3658), in agreement with the observation of c…

PhysicsrelativityAstrophysics::High Energy Astrophysical PhenomenaX-ray binaryAstronomyAstrophysics::Cosmology and Extragalactic AstrophysicsRadiusAstrophysicsstars: pulsars: individual: SAX J1808.4-3658accretion accretion diskprofiles; relativity; stars: pulsars: individual: SAX J1808.4-3658; X-rays: binaries; Physics and Astronomy (all) [accretion accretion disks; line]X-rays: binarieNeutron starPhysics and Astronomy (all)Pulsarline: profileMillisecond pulsarAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsEmission spectrumAstrophysics::Galaxy AstrophysicsLine (formation)Doppler broadening
researchProduct

Quantum gravity with THESEUS

2021

AbstractIn this paper we explore the possibility to search for a dispersion law for light propagation in vacuo with a sample of Gamma-Ray Bursts detected by the THESEUS satellite. Within Quantum Gravity theories, different models for space-time quantization predict relative discrepancies of the speed of photons w.r.t. the speed of light that (in a series expansion) depend on a given power of the ratio of the photon energy to the Planck energy. This ratio is as small as 10− 23 for photons in the soft γ −ray band (100 keV). The dominant effect is determined by the first significant term of this expansion. If the first order in this expansion is relevant, these theories imply a Lorentz Invaria…

CubeSatsSettore FIS/05 - Astronomia E AstrofisicaAll-sky monitorSpace and Planetary ScienceAstrophysics::High Energy Astrophysical PhenomenaX-raysQuantum gravityGravitational wave counterpartsAstronomy and AstrophysicsGamma-ray burstsNano-satellitesTemporal triangulationExperimental Astronomy
researchProduct

A model to interpret pulse phase shifts in AMXPs: SAX J1808.4-3658 as a proof of concept

2011

Abstract: Observational evidences of erratic 1(st) harmonic pulse phase shifts in accreting millisecond X-ray pulsars pulse phase evolution was reported by several authors. This effect always go together with much more stable 2(nd) harmonics pulse phase delays. Different possible explanations of these phase shifts have been given in literature. But all these interpretations do not explain why the 2(nd) harmonic are more stable than the 1(st) harmonic. The explanation of such a behaviour is of fundamental importance in order to gain an insight on the NS rotational behaviour and to remove the still present interpretative ambiguity on the results of timing analysis. We propose a simple toy-mod…

PhysicsMillisecondstars: magnetic fieldPhase (waves)Static timing analysispulsars: individual: XTE J1807-294Computational physicsPulse (physics)stars: neutronTheoretical physicsSettore FIS/05 - Astronomia E AstrofisicaAmplitudePulsarpulsars: generalHarmonicsHarmonicX-ray: binariesAIP Conference Proceedings
researchProduct

A Preliminary Analysis of a New Chandra Observation (ObsID 6148) of Cir X-1

2008

We present the preliminary spectral analysis of a 25 ks long Chandra observation of the peculiar source Cir X–1 near the periastron passage. We estimate more precise coordinates of the source compatible with the optical and radio counterpart coordinates. We detect emission lines associated to Mg XII, Si XIII, Si XIV, S XV, S XVI Ar XVII, Ar XVIII, Ca XIX, Ca XX, Fe XXV, Fe XXVI showing a redshift of 470 km s−1. The more intense emission features at 6.6 keV show a double‐peaked shape that can be modelled with two or three Gaussian lines.

PhysicsX-ray binaries Accretion and accretion disks Neutron stars Distances redshifts radial velocities; spatial distribution of galaxies Black holesX-ray binaries Accretion and accretion disks Neutron stars Distances redshifts radial velocitieGaussianX-ray binaryAstronomyAstrophysicsRedshiftPreliminary analysisRed shiftNeutron starsymbols.namesakeSettore FIS/05 - Astronomia E AstrofisicasymbolsSpectral analysisEmission spectrumspatial distribution of galaxies Black holes
researchProduct

"The discovery of serendipitous X-ray pulsar SAX J1802.7-2017 from a BeppoSAX observation of GX 9+1"

2004

researchProduct

The BeppoSAX 0.1 - 18 keV Spectrum of the Bright Atoll Source GX 9+1: an Indication of the Source Distance

2005

We report the results of a long, 350 ks, BeppoSAX observation of the bright atoll source GX 9+1 in the 0.12 - 18 keV energy range. During this observation GX 9+1 showed a large count rate variability in its lightcurve. From its color - color diagram we selected six zones and extracted the source energy spectrum from each zone. We find that the model, composed of a blackbody plus a Comptonized component absorbed by an equivalent hydrogen column of similar to 1.4 x 10(22) cm(-2), fits the spectra in the energy range 1 - 18 keV well; however, below 1 keV a soft excess is present. We find that the spectrum of GX 9+1, in the 0.12 - 18 keV energy range, is well fitted by the model above, if we us…

X-ray : binariestars : individual : GX 9+1X-ray : generalaccretion accretion discs; stars : individual : GX 9+1; stars : neutron; X-ray : stars; X-ray : binaries; X-ray : general:accretion accretion discX-ray : starstars : neutron
researchProduct

The Large Observatory for X-ray Timing (LOFT)

2012

High-time-resolution X-ray observations of compact objects provide direct access to strong-field gravity, to the equation of state of ultra-dense matter and to black hole masses and spins. A 10 m^2-class instrument in combination with good spectral resolution is required to exploit the relevant diagnostics and answer two of the fundamental questions of the European Space Agency (ESA) Cosmic Vision Theme "Matter under extreme conditions", namely: does matter orbiting close to the event horizon follow the predictions of general relativity? What is the equation of state of matter in neutron stars? The Large Observatory For X-ray Timing (LOFT), selected by ESA as one of the four Cosmic Vision M…

Event horizonX-ray timingMission7. Clean energy01 natural sciencesneutron starsT175 Industrial research. Research and developmentBINARIESSettore FIS/05 - Astronomia E AstrofisicaALICESILICON DRIFT DETECTORObservatoryEQUATIONneutron star010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astrophysics::Instrumentation and Methods for AstrophysicsMissions X-ray timing compact objects black holes neutron starscompact objectsAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaPROPORTIONAL COUNTER[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Active galactic nucleusCosmic VisionX-ray astronomy; high time variabilityAstrophysics::High Energy Astrophysical Phenomenablack holes; compact objects; Missions; neutron stars; X-ray timing;FOS: Physical sciencesMissionsX-ray astronomy0103 physical sciencesOSCILLATIONSInstrumentation and Methods for Astrophysics (astro-ph.IM)Supermassive black holehigh time variability010308 nuclear & particles physicsAstronomyCONSTRAINTSAstronomy and Astrophysicsblack holesGalaxyBlack holeNeutron starSpace and Planetary ScienceQB460-466 AstrophysicsDISCOVERYBLACK-HOLESUPERAGILE
researchProduct

Orbital Evolution of an Accreting Millisecond Pulsar: Witnessing the Banquet of a Hidden Black Widow?

2007

We have performed a timing analysis of all the four X-ray outbursts from the accreting millisecond pulsar SAX J1808.4-3658 observed so far by the PCA on board RXTE. For each of the outbursts we derived the best-fit value of the time of ascending node passage. We find that these times follow a parabolic trend, which gives an orbital period derivative $\dot P_{\rm orb} = (3.40 \pm 0.18) \times 10^{-12}$ s/s, and a refined estimate of the orbital period, $P_{\rm orb} = 7249.156499 \pm 1.8 \times 10^{-5}$ s (reference epoch $T_0 = 50914.8099$ MJD). This derivative is positive, suggesting a degenerate or fully convective companion star, but is more than one order of magnitude higher than what is…

Settore FIS/05 - Astronomia E AstrofisicaAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)Astrophysics::Solar and Stellar AstrophysicsFOS: Physical sciencesstars: magnetic fields stars: neutron pulsars: general pulsars: individual: SAX J1808.4-3658 X-rays: binariesAstrophysics::Earth and Planetary AstrophysicsAstrophysics
researchProduct

GrailQuest & HERMES: Hunting for Gravitational Wave Electromagnetic Counterparts and Probing Space-Time Quantum Foam

2021

GrailQuest (Gamma-ray Astronomy International Laboratory for Quantum Exploration of Space-Time) is an ambitious astrophysical mission concept that uses a fleet of small satellites whose main objective is to search for a dispersion law for light propagation in vacuo. Within Quantum Gravity theories, different models for space-time quantization predict relative discrepancies of the speed of photons w.r.t. the speed of light that depend on the ratio of the photon energy to the Planck energy. This ratio is as small as 1E-23 for photons in the gamma-ray band (100 keV). Therefore, to detect this effect, light must propagate over enormous distances and the experiment must have extraordinary sensit…

High Energy Astrophysical Phenomena (astro-ph.HE)High Energy Physics - Experiment (hep-ex)FOS: Physical sciencesAstrophysics - High Energy Astrophysical PhenomenaHigh Energy Physics - Experiment
researchProduct

On Low Mass X-ray Binaries and Millisecond Pulsar

2013

The detection, in 1998, of the first Accreting Millisecond Pulsar, started an exciting season of continuing discoveries in the fashinating field of compact binary systems harbouring a neutron star. Indeed, in these last three lustres, thanks to the extraordinary performances of astronomical detectors, on ground as well as on board of satellites, mainly in the Radio, Optical, X-ray, and Gamma-ray bands, astrophysicists had the opportunity to thoroughly investigate the so-called Recycling Scenario: the evolutionary path leading to the formation of a Millisecond Radio Pulsar. The most intriguing phase is certainly the spin-up stage during which, because of the accretion of matter and angular m…

High Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/05 - Astronomia E AstrofisicaAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesStars: neutron Stars: magnetic fields Pulsars: general X-rays: binaries X-rays: pulsarsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

The new X-ray pulsar J1802.7-2017 observed by bepposax

2005

researchProduct

The X-ray spectrum of the newly discovered accreting millisecond pulsar IGR J17511-3057

2010

We report on an XMM-Newton observation of the accreting millisecond pulsar, IGR J17511-3057. Pulsations at 244.8339512(1) Hz are observed with an RMS pulsed fraction of 14.4(3)%. A precise solution for the P_orb=12487.51(2)s binary system is derived. The measured mass function indicates a main sequence companion with a mass between 0.15 and 0.44 Msun. The XMM-Newton spectrum of the source can be modelled by at least three components, multicoloured disc emission, thermal emission from the NS surface and thermal Comptonization emission. Spectral fit of the XMM-Newton data and of the RXTE data, taken in a simultaneous temporal window, constrain the Comptonization parameters: the electron tempe…

High Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/05 - Astronomia E Astrofisicastars neutron X-rays binaries X-rays individual IGR J17511-3057Astrophysics::High Energy Astrophysical PhenomenaAstrophysics::Solar and Stellar AstrophysicsFOS: Physical sciencesAstrophysics::Earth and Planetary AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaAstrophysics::Galaxy Astrophysics
researchProduct

XIPE: the x-ray imaging polarimetry explorer

2016

XIPE, the X-ray Imaging Polarimetry Explorer, is a mission dedicated to X-ray Astronomy. At the time of writing XIPE is in a competitive phase A as fourth medium size mission of ESA (M4). It promises to reopen the polarimetry window in high energy Astrophysics after more than 4 decades thanks to a detector that efficiently exploits the photoelectric effect and to X-ray optics with large effective area. XIPE uniqueness is time-spectrally-spatially- resolved X-ray polarimetry as a breakthrough in high energy astrophysics and fundamental physics. Indeed the payload consists of three Gas Pixel Detectors at the focus of three X-ray optics with a total effective area larger than one XMM mirror bu…

X-ray AstronomyHigh-energy astronomyPolarimetryX-ray opticsX-ray telescopeCondensed Matter Physic01 natural sciencesObservatory0103 physical sciencesPolarimetryElectronicOptical and Magnetic MaterialsSpectral resolutionElectrical and Electronic Engineering010303 astronomy & astrophysicsGas Pixel DetectorPhysicsX-ray astronomyta115X-ray optics010308 nuclear & particles physicsElectronic Optical and Magnetic MaterialApplied MathematicsVegaAstronomyComputer Science Applications1707 Computer Vision and Pattern RecognitionGas Pixel Detector; Polarimetry; X-ray Astronomy; X-ray opticsCondensed Matter PhysicsComputer Science ApplicationsApplied MathematicGas Pixel Detector; Polarimetry; X-ray Astronomy; X-ray optics; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringGas Pixel Detector; Polarimetry; X-ray Astronomy; X-ray optics; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications; Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringComputer Vision and Pattern RecognitionX-ray optic
researchProduct

Science case study and scientific simulations for the enhanced X-ray Timing Polarimetry mission, eXTP

2022

The X-ray astronomy mission eXTP (enhanced X-ray Timing Polarimetry) is designed to study matter under extreme conditions of density, gravity and magnetism. Primary goals are the determination of the equation of state (EoS) of matter at supranuclear density, the physics in extremely strong magnetic fields, the study of accretion in strong-field gravity (SFG) regime. Primary targets include isolated and binary neutron stars, strong magneticfield systems like magnetars, and stellar-mass and supermassive black holes. In this paper we report about key observations and simulations with eXTP on the primary objectives involving accretion under SFG regimes and determination of NS-EoS.

X-raymethods and techniquesdense matterSettore FIS/05 - Astronomia E AstrofisicaaccretionNeutron starBlack HoleAstronomical instrumentation
researchProduct

A re-analysis of the NuSTAR and XMM-Newton broad-band spectrum of Ser~X-1

2017

Context: Ser X-1 is a well studied LMXB which clearly shows a broad iron line. Recently, Miller et al. (2103) have presented broad-band, high quality NuSTAR data of SerX-1.Using relativistically smeared self-consistent reflection models, they find a value of R_in close to 1.0 R_ISCO (corresponding to 6 R_g), and a low inclination angle, less than 10 deg. Aims: The aim of this paper is to probe to what extent the choice of reflection and continuum models (and uncertainties therein) can affect the conclusions about the disk parameters inferred from the reflection component. To this aim we re-analyze all the available public NuSTAR and XMM-Newton. Ser X-1 is a well studied source, its spectrum…

High Energy Astrophysical Phenomena (astro-ph.HE)Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics - High Energy Astrophysical Phenomena
researchProduct

LOFT - A large observatory for x-ray timing

2010

The high time resolution observations of the X-ray sky hold the key to a number of diagnostics of fundamental physics, some of which are unaccessible to other types of investigations, such as those based on imaging and spectroscopy. Revealing strong gravitational field effects, measuring the mass and spin of black holes and the equation of state of ultradense matter are among the goals of such observations. At present prospects for future, non-focused X-ray timing experiments following the exciting age of RXTE/PCA are uncertain. Technological limitations are unavoidably faced in the conception and development of experiments with effective area of several square meters, as needed in order to…

High Energy Astrophysical Phenomena (astro-ph.HE)sezeleApplied MathematicsSilicon drift chambersFOS: Physical sciencesComputer Science Applications1707 Computer Vision and Pattern RecognitionCondensed Matter PhysicsCompact sourcesCompact sources; High energy astrophysics; Silicon drift chambers; Timing; X-rays; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringSettore FIS/05 - Astronomia E AstrofisicaX-raysElectronicTimingOptical and Magnetic MaterialsElectrical and Electronic EngineeringAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaInstrumentation and Methods for Astrophysics (astro-ph.IM)Observatories X-rays Sensors Silicon Physics Polarimetry Electronics Imaging spectroscopyHigh energy astrophysics
researchProduct

Broadband spectral analysis of MXB 1659-298 in its soft and hard state

2019

The X-ray transient eclipsing source MXB 1659-298 went in outburst in 1999 and 2015, respectively, during which it was observed by XMM-Newton, NuSTAR and Swift. Using these observations we studied the broadband spectrum of the source to constrain the continuum components and to verify the presence of a reflection component. We analysed the soft and hard state of the source, finding that the soft state can be modelled with a thermal component associated with the inner accretion disc plus a Comptonised component. A smeared reflection component and the presence of an ionised absorber are also requested in the best-fit model. On the other hand, the direct continuum emission in the hard state ca…

High Energy Astrophysical Phenomena (astro-ph.HE)X-rays: binariesstars: individual (MXB 1659-298)stars: neutronaccretionaccretion disksAstrophysics::High Energy Astrophysical PhenomenaAccretion Accretion disks Stars: individual (MXB 1659-298) Stars: neutron X-rays: binariesFOS: Physical sciences[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - High Energy Astrophysical Phenomena
researchProduct

X-ray bursts and burst oscillations from the slowly spinning X-ray pulsar IGR J17480-2446 (Terzan 5)

2011

The newly discovered 11-Hz accreting pulsar, IGR J17480-2446, located in the globular cluster Terzan 5, has shown several bursts with a recurrence time as short as a few minutes. The source shows the shortest recurrence time ever observed from a neutron star. Here we present a study of the morphological, spectral and temporal properties of 107 bursts observed by the Rossi X-ray Timing Explorer. The recurrence time and the fluence of the bursts clearly anticorrelate with the increase in the persistent X-ray flux. The ratio between the energy generated by the accretion of mass and that liberated during bursts indicates that helium is ignited in a hydrogen-rich layer. Therefore, we conclude th…

Settore FIS/05 - Astronomia E Astrofisicapulsars: individual: IGR J17480-2446 X-rays: binariesindividual: IGR J17480-2446 X-rays: binaries [pulsars]
researchProduct

XIPE: the X-ray imaging polarimetry explorer

2013

arXiv:1309.6995v1.-- et al.

AstronomyAstrophysics::High Energy Astrophysical PhenomenaPolarimetryFOS: Physical sciencesAstrophysics7. Clean energy01 natural scienceslaw.inventionX-raySettore FIS/05 - Astronomia E Astrofisicalaw0103 physical sciencesPolarimetry010303 astronomy & astrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Solar and Stellar Astrophysics (astro-ph.SR)Astronomy X-ray PolarimetryPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Solar flare[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]White dwarfAstronomy and AstrophysicsTorusMagnetic reconnectionPolarization (waves)Neutron starAstrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary Science[SDU]Sciences of the Universe [physics]Astrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for AstrophysicsFlare
researchProduct