0000000001242612
AUTHOR
Monika Chanu Chongtham
Isolation of nuclei and downstream processing of cell-type-specific nuclei from micro-dissected mouse brain regions – techniques and caveats
AbstractThe mammalian brain consists of several structurally and functionally distinct regions equipped with an equally complex cell-type system. Due to its relevance in uncovering disease mechanisms, the study of cell-type-specific molecular signatures of different brain regions has increased. The rapid evolution of newer and cheaper sequencing techniques has also boosted the interest in cell-type-specific epigenetic studies. In fact, the nucleus holds most of the cell’s epigenetic information and is quite resistant to tissue dissociation processes as compared to cells. As such, nuclei are continually preferred over cells for epigenetic studies. However, the isolation of nuclei from cells …
INTACT vs. FANS for Cell-Type-Specific Nuclei Sorting: A Comprehensive Qualitative and Quantitative Comparison
Increasing numbers of studies seek to characterize the different cellular sub-populations present in mammalian tissues. The techniques “Isolation of Nuclei Tagged in Specific Cell Types” (INTACT) or “Fluorescence-Activated Nuclei Sorting” (FANS) are frequently used for isolating nuclei of specific cellular subtypes. These nuclei are then used for molecular characterization of the cellular sub-populations. Despite the increasing popularity of both techniques, little is known about their isolation efficiency, advantages, and disadvantages or downstream molecular effects. In our study, we compared the physical and molecular attributes of sfGFP+ nuclei isolated by the two methods—INTACT and FAN…