Laplacian versus Adjacency Matrix in Quantum Walk Search
A quantum particle evolving by Schr\"odinger's equation contains, from the kinetic energy of the particle, a term in its Hamiltonian proportional to Laplace's operator. In discrete space, this is replaced by the discrete or graph Laplacian, which gives rise to a continuous-time quantum walk. Besides this natural definition, some quantum walk algorithms instead use the adjacency matrix to effect the walk. While this is equivalent to the Laplacian for regular graphs, it is different for non-regular graphs, and is thus an inequivalent quantum walk. We algorithmically explore this distinction by analyzing search on the complete bipartite graph with multiple marked vertices, using both the Lapla…