6533b871fe1ef96bd12d10d2

RESEARCH PRODUCT

Laplacian versus Adjacency Matrix in Quantum Walk Search

Nikolay NahimovLuís TarratacaThomas G. Wong

subject

FOS: Physical sciences01 natural sciencesComplete bipartite graph010305 fluids & plasmasTheoretical Computer Sciencesymbols.namesake0103 physical sciencesQuantum walkAdjacency matrixElectrical and Electronic Engineering010306 general physicsMathematicsQuantum computerDiscrete mathematicsQuantum PhysicsDiscrete spaceStatistical and Nonlinear PhysicsMathematics::Spectral TheoryElectronic Optical and Magnetic MaterialsModeling and SimulationSignal ProcessingsymbolsLaplacian matrixQuantum Physics (quant-ph)Hamiltonian (quantum mechanics)Laplace operator

description

A quantum particle evolving by Schr\"odinger's equation contains, from the kinetic energy of the particle, a term in its Hamiltonian proportional to Laplace's operator. In discrete space, this is replaced by the discrete or graph Laplacian, which gives rise to a continuous-time quantum walk. Besides this natural definition, some quantum walk algorithms instead use the adjacency matrix to effect the walk. While this is equivalent to the Laplacian for regular graphs, it is different for non-regular graphs, and is thus an inequivalent quantum walk. We algorithmically explore this distinction by analyzing search on the complete bipartite graph with multiple marked vertices, using both the Laplacian and adjacency matrix. The two walks differ qualitatively and quantitatively in their required jumping rate, runtime, sampling of marked vertices, and in what constitutes a natural initial state. Thus the choice of the Laplacian or adjacency matrix to effect the walk has important algorithmic consequences.

10.1007/s11128-016-1373-1http://arxiv.org/abs/1512.05554