0000000000563474
AUTHOR
Nikolay Nahimov
On symmetric nonlocal games
Abstract Nonlocal games are used to display differences between the classical and quantum world. In this paper, we study symmetric XOR games, which form an important subset of nonlocal games. We give simple methods for calculating the classical and the quantum values for symmetric XOR games with one-bit input per player. We illustrate those methods with two examples. One example is an N -player game (due to Ardehali (1992) [3] ) that provides the maximum quantum-over-classical advantage. The second example comes from generalization of CHSH game by letting the referee to choose arbitrary symmetric distribution of players’ inputs.
Spatial Search on Grids with Minimum Memory
We study quantum algorithms for spatial search on finite dimensional grids. Patel et al. and Falk have proposed algorithms based on a quantum walk without a coin, with different operators applied at even and odd steps. Until now, such algorithms have been studied only using numerical simulations. In this paper, we present the first rigorous analysis for an algorithm of this type, showing that the optimal number of steps is $O(\sqrt{N\log N})$ and the success probability is $O(1/\log N)$, where $N$ is the number of vertices. This matches the performance achieved by algorithms that use other forms of quantum walks.
Laplacian versus Adjacency Matrix in Quantum Walk Search
A quantum particle evolving by Schr\"odinger's equation contains, from the kinetic energy of the particle, a term in its Hamiltonian proportional to Laplace's operator. In discrete space, this is replaced by the discrete or graph Laplacian, which gives rise to a continuous-time quantum walk. Besides this natural definition, some quantum walk algorithms instead use the adjacency matrix to effect the walk. While this is equivalent to the Laplacian for regular graphs, it is different for non-regular graphs, and is thus an inequivalent quantum walk. We algorithmically explore this distinction by analyzing search on the complete bipartite graph with multiple marked vertices, using both the Lapla…