0000000001269482

AUTHOR

Kaspars Balodis

showing 19 related works from this author

Quantum Lower Bound for Graph Collision Implies Lower Bound for Triangle Detection

2015

We show that an improvement to the best known quantum lower bound for GRAPH-COLLISION problem implies an improvement to the best known lower bound for TRIANGLE problem in the quantum query complexity model. In GRAPH-COLLISION we are given free access to a graph $(V,E)$ and access to a function $f:V\rightarrow \{0,1\}$ as a black box. We are asked to determine if there exist $(u,v) \in E$, such that $f(u)=f(v)=1$. In TRIANGLE we have a black box access to an adjacency matrix of a graph and we have to determine if the graph contains a triangle. For both of these problems the known lower bounds are trivial ($\Omega(\sqrt{n})$ and $\Omega(n)$, respectively) and there is no known matching upper …

Quantum queryQuantum PhysicsGeneral Computer ScienceFree accessTheoryofComputation_GENERALCollisionUpper and lower boundsOmegaGraphCombinatoricsComputer Science - Computational ComplexityAdjacency matrixQuantumMathematicsMathematicsofComputing_DISCRETEMATHEMATICS
researchProduct

Weak Parity

2013

We study the query complexity of Weak Parity: the problem of computing the parity of an n-bit input string, where one only has to succeed on a 1/2 + ε fraction of input strings, but must do so with high probability on those inputs where one does succeed. It is well-known that n randomized queries and n/2 quantum queries are needed to compute parity on all inputs. But surprisingly, we give a randomized algorithm for Weak Parity that makes only O(n/log[superscript 0.246](1/ε)) queries, as well as a quantum algorithm that makes O(n/√log(1/ε)) queries. We also prove a lower bound of Ω(n/log(1/ε)) in both cases, as well as lower bounds of Ω(logn) in the randomized case and Ω(√logn) in the quantu…

FOS: Computer and information sciencesComputer Science - Computational ComplexityQuantum PhysicsTheoryofComputation_GENERALFOS: Physical sciencesComputational Complexity (cs.CC)Quantum Physics (quant-ph)
researchProduct

One Alternation Can Be More Powerful Than Randomization in Small and Fast Two-Way Finite Automata

2013

We show a family of languages that can be recognized by a family of linear-size alternating one-way finite automata with one alternation but cannot be recognized by any family of polynomial-size bounded-error two-way probabilistic finite automata with the expected runtime bounded by a polynomial. In terms of finite automata complexity theory this means that neither 1Σ2 nor 1Π2 is contained in 2P2.

Discrete mathematicsNested wordDeterministic finite automatonContinuous spatial automatonAutomata theoryQuantum finite automataNondeterministic finite automatonω-automatonNonlinear Sciences::Cellular Automata and Lattice GasesComputer Science::Formal Languages and Automata TheoryMobile automatonMathematics
researchProduct

On the Hierarchy Classes of Finite Ultrametric Automata

2015

This paper explores the language classes that arise with respect to the head count of a finite ultrametric automaton. First we prove that in the one-way setting there is a language that can be recognized by a one-head ultrametric finite automaton and cannot be recognized by any k-head non-deterministic finite automaton. Then we prove that in the two-way setting the class of languages recognized by ultrametric finite k-head automata is a proper subclass of the class of languages recognized by (k + 1)-head automata. Ultrametric finite automata are similar to probabilistic and quantum automata and have only just recently been introduced by Freivalds. We introduce ultrametric Turing machines an…

Discrete mathematicsClass (set theory)TheoryofComputation_COMPUTATIONBYABSTRACTDEVICESFinite-state machineHierarchy (mathematics)Nonlinear Sciences::Cellular Automata and Lattice GasesCondensed Matter::Disordered Systems and Neural NetworksAutomatonAlgebraTuring machinesymbols.namesakeTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESsymbolsMathematics::Metric GeometryQuantum finite automataAutomata theoryUltrametric spaceComputer Science::Formal Languages and Automata TheoryMathematicsofComputing_DISCRETEMATHEMATICSMathematics
researchProduct

Worst Case Analysis of Non-local Games

2013

Non-local games are studied in quantum information because they provide a simple way for proving the difference between the classical world and the quantum world. A non-local game is a cooperative game played by 2 or more players against a referee. The players cannot communicate but may share common random bits or a common quantum state. A referee sends an input x i to the i th player who then responds by sending an answer a i to the referee. The players win if the answers a i satisfy a condition that may depend on the inputs x i .

Computer Science::Computer Science and Game TheoryComputingMilieux_PERSONALCOMPUTINGTheoryofComputation_GENERAL0102 computer and information sciencesNon local01 natural sciences010201 computation theory & mathematicsQuantum stateSimple (abstract algebra)0103 physical sciencesQuantum worldQuantum information010306 general physicsMathematical economicsCase analysisMathematics
researchProduct

Quantum Strategies Are Better Than Classical in Almost Any XOR Game

2012

We initiate a study of random instances of nonlocal games. We show that quantum strategies are better than classical for almost any 2-player XOR game. More precisely, for large n, the entangled value of a random 2-player XOR game with n questions to every player is at least 1.21... times the classical value, for 1−o(1) fraction of all 2-player XOR games.

Discrete mathematicsQuantum pseudo-telepathy010102 general mathematics0103 physical sciencesFraction (mathematics)0101 mathematics010306 general physics01 natural sciencesValue (mathematics)QuantumMathematics
researchProduct

Counting with Probabilistic and Ultrametric Finite Automata

2014

We investigate the state complexity of probabilistic and ultrametric finite automata for the problem of counting, i.e. recognizing the one-word unary language \(C_n=\left\{ 1^n \right\} \). We also review the known results for other types of automata.

Discrete mathematicsFinite-state machineState complexityUnary languageProbabilistic logicQuantum finite automataNonlinear Sciences::Cellular Automata and Lattice GasesUltrametric spaceComputer Science::Formal Languages and Automata TheoryMathematicsAutomaton
researchProduct

Structured Frequency Algorithms

2015

B.A. Trakhtenbrot proved that in frequency computability (introduced by G. Rose) it is crucially important whether the frequency exceeds \(\frac{1}{2}\). If it does then only recursive sets are frequency-computable. If the frequency does not exceed \(\frac{1}{2}\) then a continuum of sets is frequency-computable. Similar results for finite automata were proved by E.B. Kinber and H. Austinat et al. We generalize the notion of frequency computability demanding a specific structure for the correct answers. We show that if this structure is described in terms of finite projective planes then even a frequency \(O(\frac{\sqrt{n}}{n})\) ensures recursivity of the computable set. We also show that …

CombinatoricsRecursive setComputationComputabilityStructure (category theory)Graph (abstract data type)Continuum (set theory)Rose (topology)Projective planeMathematics
researchProduct

Separations in Query Complexity Based on Pointer Functions

2015

In 1986, Saks and Wigderson conjectured that the largest separation between deterministic and zero-error randomized query complexity for a total boolean function is given by the function $f$ on $n=2^k$ bits defined by a complete binary tree of NAND gates of depth $k$, which achieves $R_0(f) = O(D(f)^{0.7537\ldots})$. We show this is false by giving an example of a total boolean function $f$ on $n$ bits whose deterministic query complexity is $\Omega(n/\log(n))$ while its zero-error randomized query complexity is $\tilde O(\sqrt{n})$. We further show that the quantum query complexity of the same function is $\tilde O(n^{1/4})$, giving the first example of a total function with a super-quadra…

FOS: Computer and information sciencesFOS: Physical sciences0102 computer and information sciencesComputational Complexity (cs.CC)01 natural sciencesCombinatoricsArtificial Intelligence0103 physical sciences0101 mathematics010306 general physicsCommunication complexityBoolean functionQuantumMathematicsDiscrete mathematicsQuantum PhysicsBinary tree010102 general mathematicsNAND logicRandomized algorithmComputer Science - Computational ComplexityHardware and ArchitectureControl and Systems Engineering010201 computation theory & mathematicsIndependent setPointer (computer programming)Quantum algorithmQuantum Physics (quant-ph)SoftwareInformation Systems
researchProduct

Intent Detection System Based on Word Embeddings

2018

Intent detection is one of the main tasks of a dialogue system. In this paper we present our intent detection system that is based on FastText word embeddings and neural network classifier. We find a significant improvement in the FastText sentence vectorization. The results show that our intent detection system provides state-of-the-art results on three English datasets outperforming many popular services.

Computer sciencebusiness.industry0102 computer and information sciences02 engineering and technologycomputer.software_genre01 natural sciencesNeural network classifier010201 computation theory & mathematics0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingImage tracingArtificial intelligenceDialog systembusinesscomputerWord (computer architecture)Natural language processingSentence
researchProduct

Frequency Prediction of Functions

2012

Prediction of functions is one of processes considered in inductive inference. There is a "black box" with a given total function f in it. The result of the inductive inference machine F( ) is expected to be f(n+1). Deterministic and probabilistic prediction of functions has been widely studied. Frequency computation is a mechanism used to combine features of deterministic and probabilistic algorithms. Frequency computation has been used for several types of inductive inference, especially, for learning via queries. We study frequency prediction of functions and show that that there exists an interesting hierarchy of predictable classes of functions.

Hierarchy (mathematics)ComputationExistential quantificationBlack boxProbabilistic logicProbabilistic analysis of algorithmsInductive reasoningAlgorithmMathematicsRandomized algorithm
researchProduct

Teksta korpusu datoranalīze dažādu valodu terminu ekvivalences noteikšanai

2009

Apvienojot vairākas divvalodu terminoloăijas datubāzes vienā daudzvalodu datubāzē, nepieciešams vienā ierakstā apvienot vienam un tam pašam jēdzienam atbilstošos dažādu valodu terminu ierakstus. Lai identificētu šādus ierakstus, nepieciešams par terminiem dažādās valodās noskaidrot, vai tie ir ekvivalenti. Bakalaura darbā ir mēăināts šo problēmu risināt ar teksta korpusu datoranalīzi. Autors izstrādājis vairākas metodes terminu ekvivalences noteikšanai, balstoties uz teksta korpusu apstrādē iegūtiem statistiskiem datiem. Šīs metodes ar datoreksperimentu palīdzību ir notestētas un ir izanalizēti rezultāti.

Datorzinātne
researchProduct

Quantum Speedups for Exponential-Time Dynamic Programming Algorithms

2018

In this paper we study quantum algorithms for NP-complete problems whose best classical algorithm is an exponential time application of dynamic programming. We introduce the path in the hypercube problem that models many of these dynamic programming algorithms. In this problem we are asked whether there is a path from $0^n$ to $1^n$ in a given subgraph of the Boolean hypercube, where the edges are all directed from smaller to larger Hamming weight. We give a quantum algorithm that solves path in the hypercube in time $O^*(1.817^n)$. The technique combines Grover's search with computing a partial dynamic programming table. We use this approach to solve a variety of vertex ordering problems o…

FOS: Computer and information sciencesQuantum PhysicsComputer Science - Data Structures and AlgorithmsFOS: Physical sciencesData Structures and Algorithms (cs.DS)Quantum Physics (quant-ph)
researchProduct

Integer Complexity: Experimental and Analytical Results

2012

We consider representing of natural numbers by arithmetical expressions using ones, addition, multiplication and parentheses. The (integer) complexity of n -- denoted by ||n|| -- is defined as the number of ones in the shortest expressions representing n. We arrive here very soon at the problems that are easy to formulate, but (it seems) extremely hard to solve. In this paper we represent our attempts to explore the field by means of experimental mathematics. Having computed the values of ||n|| up to 10^12 we present our observations. One of them (if true) implies that there is an infinite number of Sophie Germain primes, and even that there is an infinite number of Cunningham chains of len…

Mathematics - Number TheoryFOS: MathematicsNumber Theory (math.NT)
researchProduct

Varbūtiskā reducējamība

2011

Darba sākumā sniegts ieskats algoritmu teorijas pamatos – apskatītas lēmumu problēmas, Tjūringa mašīnas, rekursīvas un rekursīvi sanumurējamas kopas, dažādi reducējamības veidi. Tālāk aplūkoti varbūtiski algoritmi, apskatīti piemēri problēmām, kuras varbūtiskas mašīnas risina labāk nekā determinētas, ieviests varbūtiskas reducējamības jēdziens. Darba galveno daļu sastāda autora iegūtie rezultāti par varbūtisku reducējamību. Tiek parādīts, ka eksistē bezgalīga hierarhija ar varbūtiskām m-reducējamībām. Pierādīts, ka varbūtiska tabulārā reducējamība ir ekvivalenta determinētai tad un tikai tad, ja pareizās atbildes varbūtība ir lielāka par 2/3. Pierādīta varbūtiskas un determinētas Tjūringa r…

Datorzinātne
researchProduct

Unconventional Finite Automata and Algorithms

2016

Elektroniskā versija nesatur pielikumus

ElektronikaTelekomunikācijasMathematical Foundations of Computer ScienceDatorzinātnesComputer ScienceDatortehnikaInformācijas tehnoloģija
researchProduct

Parameterized Quantum Query Complexity of Graph Collision

2013

We present three new quantum algorithms in the quantum query model for \textsc{graph-collision} problem: \begin{itemize} \item an algorithm based on tree decomposition that uses $O\left(\sqrt{n}t^{\sfrac{1}{6}}\right)$ queries where $t$ is the treewidth of the graph; \item an algorithm constructed on a span program that improves a result by Gavinsky and Ito. The algorithm uses $O(\sqrt{n}+\sqrt{\alpha^{**}})$ queries, where $\alpha^{**}(G)$ is a graph parameter defined by \[\alpha^{**}(G):=\min_{VC\text{-- vertex cover of}G}{\max_{\substack{I\subseteq VC\\I\text{-- independent set}}}{\sum_{v\in I}{\deg{v}}}};\] \item an algorithm for a subclass of circulant graphs that uses $O(\sqrt{n})$ qu…

FOS: Computer and information sciencesQuantum PhysicsComputer Science - Computational ComplexityComputer Science::Information RetrievalComputer Science - Data Structures and AlgorithmsFOS: Physical sciencesData Structures and Algorithms (cs.DS)Computational Complexity (cs.CC)Quantum Physics (quant-ph)MathematicsofComputing_DISCRETEMATHEMATICS
researchProduct

Worst case analysis of non-local games

2011

Non-local games are studied in quantum information because they provide a simple way for proving the difference between the classical world and the quantum world. A non-local game is a cooperative game played by 2 or more players against a referee. The players cannot communicate but may share common random bits or a common quantum state. A referee sends an input $x_i$ to the $i^{th}$ player who then responds by sending an answer $a_i$ to the referee. The players win if the answers $a_i$ satisfy a condition that may depend on the inputs $x_i$. Typically, non-local games are studied in a framework where the referee picks the inputs from a known probability distribution. We initiate the study …

Computer Science::Computer Science and Game TheoryQuantum PhysicsComputingMilieux_PERSONALCOMPUTINGFOS: Physical sciencesQuantum Physics (quant-ph)
researchProduct

Quantum strategies are better than classical in almost any XOR game

2011

We initiate a study of random instances of nonlocal games. We show that quantum strategies are better than classical for almost any 2-player XOR game. More precisely, for large n, the entangled value of a random 2-player XOR game with n questions to every player is at least 1.21... times the classical value, for 1-o(1) fraction of all 2-player XOR games.

FOS: Computer and information sciencesQuantum PhysicsComputer Science - Computer Science and Game TheoryFOS: Physical sciencesQuantum Physics (quant-ph)Computer Science and Game Theory (cs.GT)
researchProduct