0000000001275493
AUTHOR
Daniele Binosi
Domain wall junctions in a generalized Wess-Zumino model
We investigate domain wall junctions in a generalized Wess-Zumino model with a Z(N) symmetry. We present a method to identify the junctions which are potentially BPS saturated. We then use a numerical simulation to show that those junctions indeed saturate the BPS bound for N=4. In addition, we study the decay of unstable non-BPS junctions.
Displacement Operator Formalism for Renormalization and Gauge Dependence to All Orders
We present a new method for determining the renormalization of Green functions to all orders in perturbation theory, which we call the displacement operator formalism, or the D-formalism, in short. This formalism exploits the fact that the renormalized Green functions may be calculated by displacing by an infinite amount the renormalized fields and parameters of the theory with respect to the unrenormalized ones. With the help of this formalism, we are able to obtain the precise form of the deformations induced to the Nielsen identities after renormalization, and thus derive the exact dependence of the renormalized Green functions on the renormalized gauge-fixing parameter to all orders. As…
Spatial soliton formation in photonic crystal fibers
We demonstrate the existence of spatial soliton solutions in photonic crystal fibers (PCF's). These guided localized nonlinear waves appear as a result of the balance between the linear and nonlinear diffraction properties of the inhomogeneous photonic crystal cladding. The spatial soliton is realized self-consistently as the fundamental mode of the effective fiber defined simultaneously by the PCF linear and the self-induced nonlinear refractive indices. It is also shown that the photonic crystal cladding is able to stabilize these solutions, which would be unstable otherwise if the medium was entirely homogeneous.
The lifetime of unstable particles in electromagnetic fields
We show that the electromagnetic moments of unstable particles (resonances) have an absorptive contribution which quantifies the change of the particle's lifetime in an external electromagnetic field. To give an example we compute here the imaginary part of the magnetic moment for the cases of the muon and the neutron at leading order in the electroweak coupling. We also consider an analogous effect for the strongly-decaying $\Delta$(1232) resonance. The result for the muon is Im$ \mu = e G_F^2 m^3/768 \pi^3$, with $e$ the charge and $m$ the mass of the muon, $G_F$ the Fermi constant, which in an external magnetic field of $B$ Tesla give rise to the relative change in the muon lifetime of $…
JaxoDraw: A graphical user interface for drawing Feynman diagrams
JaxoDraw is a Feynman graph plotting tool written in Java. It has a complete graphical user interface that allows all actions to be carried out via mouse click-and-drag operations in a WYSIWYG fashion. Graphs may be exported to postscript/EPS format and can be saved in XML files to be used in later sessions. One of the main features of JaxoDraw is the possibility to produce LaTeX code that may be used to generate graphics output, thus combining the powers of TeX/LaTeX with those of a modern day drawing program. With JaxoDraw it becomes possible to draw even complicated Feynman diagrams with just a few mouse clicks, without the knowledge of any programming language.
Single Spin Asymmetry Parameter from Deeply Virtual Compton Scattering of Hadrons up to Twist-3 accuracy: I. Pion case
The study of deeply virtual Compton scattering has shown that electromagnetic gauge invariance requires, to leading order, not only twist two but additional twist three contributions. We apply this analysis and, using the Ellis-Furmanski-Petronzio factorization scheme, compute the single (electron) spin asymmetry arising in the collision of longitudinally polarized electrons with hadrons up to twist 3 accuracy. In order to simplify the kinematics we restrict the actual calculation to pions in the chiral limit. The process is described in terms of the generalized parton distribution functions which we obtain within a bag model framework.
New Schwinger-Dyson equations for non-Abelian gauge theories
We show that the application of the pinch technique to the conventional Schwinger-Dyson equations for the gluon propagator, gluon-quark vertex, and three-gluon vertex, gives rise to new equations endowed with special properties. The new series coincides with the one obtained in the Feynman gauge of the background field method, thus capturing the extensive gauge cancellations implemented by the pinch technique at the level of individual Green's functions. Its building blocks are the fully dressed pinch technique Green's functions obeying Abelian all-order Ward identities instead of the Slavnov-Taylor identites satisfied by their conventional counterparts. As a result, and contrary to the sta…
Two-loop pinch technique in the electroweak sector
The generalization of the two-loop Pinch Technique to the Electroweak Sector of the Standard Model is presented. We restrict ourselves to the case of conserved external currents, and provide a detailed analysis of both the charged and neutral sectors. The crucial ingredient for this construction is the identification of the parts discarded during the pinching procedure with well-defined contributions to the Slavnov-Taylor identity satisfied by the off-shell one-loop gauge-boson vertices; the latter are nested inside the conventional two-loop self-energies. It is shown by resorting to a set of powerful identities that the two-loop effective Pinch Technique self-energies coincide with the cor…
Pinch technique self-energies and vertices to all orders in perturbation theory
The all-order construction of the pinch technique gluon self-energy and quark-gluon vertex is presented in detail within the class of linear covariant gauges. The main ingredients in our analysis are the identification of a special Green's function, which serves as a common kernel to all self-energy and vertex diagrams, and the judicious use of the Slavnov-Taylor identity it satisfies. In particular, it is shown that the ghost-Green's functions appearing in this identity capture precisely the result of the pinching action at arbitrary order. By virtue of this observation the construction of the quark-gluon vertex becomes particularly compact. It turns out that the aforementioned ghost-Green…
CP violation and the H-A lineshape
In two-Higgs doublet models (and particularly in the MSSM) the CP-even (H) and CP-odd (A) neutral scalars are nearly degenerate in mass, and their s-channel production would lead to nearly overlapping resonances. CP-violating effects may connect these two Higgs bosons, giving origin to one-loop particle mixing, which, due to their mass proximity, can be resonantly enhanced, altering their lineshape significantly. We show that, in general, the effect of such a CP-violating mixing cannot be mimicked by (or be re-absorbed into) a simple redefinition of the H and A masses in the context of a CP-conserving model. Specifically, the effects of the CP-mixing are such that, either the mass-splitting…
Coupled dynamics in gluon mass generation and the impact of the three-gluon vertex
We present a detailed study of the subtle interplay transpiring at the level of two integral equations that are instrumental for the dynamical generation of a gluon mass in pure Yang-Mills theories. The main novelty is the joint treatment of the Schwinger-Dyson equation governing the infrared behaviour of the gluon propagator and of the integral equation that controls the formation of massless bound-state excitations, whose inclusion is instrumental for obtaining massive solutions from the former equation. The self-consistency of the entire approach imposes the requirement of using a single value for the gauge coupling entering in the two key equations; its fulfillment depends crucially on …
Effects of divergent ghost loops on the Green’s functions of QCD
In the present work we discuss certain characteristic features encoded in some of the fundamental QCD Green's functions, whose origin can be traced back to the nonperturbative masslessness of the ghost field, in the Landau gauge. Specifically, the ghost loops that contribute to these Green's functions display infrared divergences, akin to those encountered in the perturbative treatment, in contradistinction to the gluonic loops, whose perturbative divergences are tamed by the dynamical generation of an effective gluon mass. In d=4, the aforementioned divergences are logarithmic, thus causing a relatively mild impact, whereas in d=3 they are linear, giving rise to enhanced effects. In the ca…
Yang-Mills two-point functions in linear covariant gauges
In this work we use two different but complementary approaches in order to study the ghost propagator of a pure SU(3) Yang-Mills theory quantized in the linear covariant gauges, focusing on its dependence on the gauge-fixing parameter $\xi$ in the deep infrared. In particular, we first solve the Schwinger-Dyson equation that governs the dynamics of the ghost propagator, using a set of simplifying approximations, and under the crucial assumption that the gluon propagators for $\xi>0$ are infrared finite, as is the case in the Landau gauge $(\xi=0)$. Then we appeal to the Nielsen identities, and express the derivative of the ghost propagator with respect to $\xi$ in terms of certain auxiliary…
Unified description of seagull cancellations and infrared finiteness of gluon propagators
We present a generalized theoretical framework for dealing with the important issue of dynamical mass generation in Yang-Mills theories, and, in particular, with the infrared finiteness of the gluon propagators, observed in a multitude of recent lattice simulations. Our analysis is manifestly gauge-invariant, in the sense that it preserves the transversality of the gluon self-energy, and gauge-independent, given that the conclusions do not depend on the choice of the gauge-fixing parameter within the linear covariant gauges. The central construction relies crucially on the subtle interplay between the Abelian Ward identities satisfied by the nonperturbative vertices and a special integral i…
Nonperturbative study of the four gluon vertex
In this paper we study the nonperturbative structure of the SU(3) four-gluon vertex in the Landau gauge, concentrating on contributions quadratic in the metric. We employ an approximation scheme where "one-loop" diagrams are computed using fully dressed gluon and ghost propagators, and tree-level vertices. When a suitable kinematical configuration depending on a single momentum scale $p$ is chosen, only two structures emerge: the tree-level four-gluon vertex, and a tensor orthogonal to it. A detailed numerical analysis reveals that the form factor associated with this latter tensor displays a change of sign (zero-crossing) in the deep infrared, and finally diverges logarithmically. The orig…
Process-independent strong running coupling
We unify two widely different approaches to understanding the infrared behaviour of quantum chromodynamics (QCD), one essentially phenomenological, based on data, and the other computational, realised via quantum field equations in the continuum theory. Using the latter, we explain and calculate a process-independent running-coupling for QCD, a new type of effective charge that is an analogue of the Gell-Mann--Low effective coupling in quantum electrodynamics. The result is almost identical to the process-dependent effective charge defined via the Bjorken sum rule, which provides one of the most basic constraints on our knowledge of nucleon spin structure. This reveals the Bjorken sum to be…
Natural constraints on the gluon-quark vertex
In principle, the strong-interaction sector of the Standard Model is characterised by a unique renormalisation-group-invariant (RGI) running interaction and a unique form for the dressed--gluon-quark vertex, $\Gamma_\mu$; but, whilst much has been learnt about the former, the latter is still obscure. In order to improve this situation, we use a RGI running-interaction that reconciles both top-down and bottom-up analyses of the gauge sector in quantum chromodynamics (QCD) to compute dressed-quark gap equation solutions with 1,660,000 distinct Ansaetze for $\Gamma_\mu$. Each one of the solutions is then tested for compatibility with three physical criteria and, remarkably, we find that merely…
On the zero crossing of the three-gluon vertex
We report on new results on the infrared behaviour of the three-gluon vertex in quenched Quantum Chormodynamics, obtained from large-volume lattice simulations. The main focus of our study is the appearance of the characteristic infrared feature known as 'zero crossing', the origin of which is intimately connected with the nonperturbative masslessness of the Faddeev-Popov ghost. The appearance of this effect is clearly visible in one of the two kinematic configurations analyzed, and its theoretical origin is discussed in the framework of Schwinger-Dyson equations. The effective coupling in the momentum subtraction scheme that corresponds to the three-gluon vertex is constructed, revealing t…
QCD effective charge from the three-gluon vertex of the background-field method
In this article we study in detail the prospects of determining the infrared finite QCD effective charge from a special kinematic limit of the vertex function corresponding to three background gluons. This particular Green's function satisfies a QED-like Ward identity, relating it to the gluon propagator, with no reference to the ghost sector. Consequently, its longitudinal form factors may be expressed entirely in terms of the corresponding gluon wave function, whose inverse is proportional to the effective charge. After reviewing certain important theoretical properties, we consider a typical lattice quantity involving this vertex, and derive its exact dependence on the various form facto…
Domain walls in supersymmetric QCD: The taming of the zoo
We provide a unified picture of the domain wall spectrum in supersymmetric QCD with Nc colors and Nf flavors of quarks in the (anti-) fundamental representation. Within the framework of the Veneziano-Yankielowicz-Taylor effective Lagrangian, we consider domain walls connecting chiral symmetry breaking vacua, and we take the quark masses to be degenerate. For Nf/Ncm** there is no domain wall. We numerically determine m* and m** as a function of Nf/Nc, and we find that m** approaches a constant value in the limit that this ratio goes to one.
Distribution Amplitudes of Heavy-Light Mesons
A symmetry-preserving approach to the continuum bound-state problem in quantum field theory is used to calculate the masses, leptonic decay constants and light-front distribution amplitudes of empirically accessible heavy-light mesons. The inverse moment of the $B$-meson distribution is particularly important in treatments of exclusive $B$-decays using effective field theory and the factorisation formalism; and its value is therefore computed: $\lambda_B(\zeta = 2\,{\rm GeV}) = 0.54(3)\,$GeV. As an example and in anticipation of precision measurements at new-generation $B$-factories, the branching fraction for the rare $B\to \gamma(E_\gamma) \ell \nu_\ell$ radiative decay is also calculated…
Indirect determination of the Kugo-Ojima function from lattice data
We study the structure and non-perturbative properties of a special Green's function, u(q), whose infrared behavior has traditionally served as the standard criterion for the realization of the Kugo-Ojima confinement mechanism. It turns out that, in the Landau gauge, u(q) can be determined from a dynamical equation, whose main ingredients are the gluon propagator and the ghost dressing function, integrated over all physical momenta. Using as input for these two (infrared finite) quantities recent lattice data, we obtain an indirect determination of u(q). The results of this mixed procedure are in excellent agreement with those found previously on the lattice, through a direct simulation of …
Infrared finite effective charge of QCD
We show that the gauge invariant treatment of the Schwinger-Dyson equations of QCD leads to an infrared finite gluon propagator, signaling the dynamical generation of an effective gluon mass, and a non-enhanced ghost propagator, in qualitative agreement with recent lattice data. The truncation scheme employed is based on the synergy between the pinch technique and the background field method. One of its most powerful features is that the transversality of the gluon self-energy is manifestly preserved, exactly as dictated by the BRST symmetry of the theory. We then explain, for the first time in the literature, how to construct non-perturbatively a renormalization group invariant quantity ou…
Mass generation in Yang-Mills theories *
In this talk we review recent progress on our understanding of the nonperturbative phenomenon of mass generation in non-Abelian gauge theories, and the way it manifests itself at the level of the gluon propagator, thus establishing a close contact with a variety of results obtained in large-volume lattice simulations. The key observation is that, due to an exact cancellation operating at the level of the Schwinger-Dyson equations, the gluon propagator remains rigorously massless, provided that the fully-dressed vertices of the theory do not contain massless poles. The inclusion of such poles activates the well-known Schwinger mechanism, which permits the evasion of the aforementioned cancel…
The effective neutrino charge radius
It is shown that at one-loop order a neutrino charge radius (NCR) may be defined, which is ultraviolet finite, does not depend on the gauge-fixing parameter, nor on properties of the target other than its electric charge. This is accomplished through the systematic decomposition of physical amplitudes into effective self-energies, vertices, and boxes, which separately respect electroweak gauge invariance. In this way the NCR stems solely from an effective proper photon-neutrino one-loop vertex, which satisfies a naive, QED-like Ward identity. The NCR so defined may be extracted from experiment, at least in principle, by expressing a set of experimental electron-neutrino cross-sections in te…
Bridging a gap between continuum-QCD and ab initio predictions of hadron observables
Within contemporary hadron physics there are two common methods for determining the momentum-dependence of the interaction between quarks: the top-down approach, which works toward an ab initio computation of the interaction via direct analysis of the gauge-sector gap equations; and the bottom-up scheme, which aims to infer the interaction by fitting data within a well-defined truncation of those equations in the matter sector that are relevant to bound-state properties. We unite these two approaches by demonstrating that the renormalisation-group-invariant running-interaction predicted by contemporary analyses of QCD's gauge sector coincides with that required in order to describe ground-s…
Pinch Technique: Theory and Applications
We review the theoretical foundations and the most important physical applications of the Pinch Technique (PT). This general method allows the construction of off-shell Green’s functions in non-Abelian gauge theories that are independent of the gauge-fixing parameter and satisfy ghost-free Ward identities. We first present the diagrammatic formulation of the technique in QCD, deriving, at one loop, the gauge independent gluon self-energy, quark–gluon vertex, and three-gluon vertex, together with their Abelian Ward identities. The generalization of the PT to theories with spontaneous symmetry breaking is carried out in detail, and the profound connection with the optical theorem and the disp…
Forward-backward equations for nonlinear propagation in axially invariant optical systems
We present a novel general framework to deal with forward and backward components of the electromagnetic field in axially-invariant nonlinear optical systems, which include those having any type of linear or nonlinear transverse inhomogeneities. With a minimum amount of approximations, we obtain a system of two first-order equations for forward and backward components explicitly showing the nonlinear couplings among them. The modal approach used allows for an effective reduction of the dimensionality of the original problem from 3+1 (three spatial dimensions plus one time dimension) to 1+1 (one spatial dimension plus one frequency dimension). The new equations can be written in a spinor Dir…
Schwinger mechanism in linear covariant gauges
In this work we explore the applicability of a special gluon mass generating mechanism in the context of the linear covariant gauges. In particular, the implementation of the Schwinger mechanism in pure Yang-Mills theories hinges crucially on the inclusion of massless bound-state excitations in the fundamental nonperturbative vertices of the theory. The dynamical formation of such excitations is controlled by a homogeneous linear Bethe-Salpeter equation, whose nontrivial solutions have been studied only in the Landau gauge. Here, the form of this integral equation is derived for general values of the gauge-fixing parameter, under a number of simplifying assumptions that reduce the degree of…
New method for determining the quark-gluon vertex
We present a novel nonperturbative approach for calculating the form factors of the quark-gluon vertex, in a general covariant gauge. The key ingredient of this method is the exact all-order relation connecting the conventional quark-gluon vertex with the corresponding vertex of the background field method, which is Abelian-like. When this latter relation is combined with the standard gauge technique, supplemented by a crucial set of transverse Ward identities, it allows the approximate determination of the nonperturbative behavior of all twelve form factors comprising the quark-gluon vertex, for arbitrary values of the momenta. The actual implementation of this procedure is carried out in …
Pinch technique and the Batalin-Vilkovisky formalism
In this paper we take the first step towards a non-diagrammatic formulation of the Pinch Technique. In particular we proceed into a systematic identification of the parts of the one-loop and two-loop Feynman diagrams that are exchanged during the pinching process in terms of unphysical ghost Green's functions; the latter appear in the standard Slavnov-Taylor identity satisfied by the tree-level and one-loop three-gluon vertex. This identification allows for the consistent generalization of the intrinsic pinch technique to two loops, through the collective treatment of entire sets of diagrams, instead of the laborious algebraic manipulation of individual graphs, and sets up the stage for the…
Nonperturbative comparison of QCD effective charges
We study the non-perturbative behavior of two versions of the QCD effective charge, one obtained from the pinch technique gluon self-energy, and one from the ghost-gluon vertex. Despite their distinct theoretical origin, due to a fundamental identity relating various of the ingredients appearing in their respective definitions, the two effective charges are almost identical in the entire range of physical momenta, and coincide exactly in the deep infrared, where they freeze at a common finite value. Specifically, the dressing function of the ghost propagator is related to the two form factors in the Lorentz decomposition of a certain Green's function, appearing in a variety of field-theoret…
The dynamical equation of the effective gluon mass
In this article we derive the integral equation that controls the momentum dependence of the effective gluon mass in the Landau gauge. This is accomplished by means of a well-defined separation of the corresponding "one-loop dressed" Schwinger-Dyson equation into two distinct contributions, one associated with the mass and one with the standard kinetic part of the gluon. The entire construction relies on the existence of a longitudinally coupled vertex of nonperturbative origin, which enforces gauge invariance in the presence of a dynamical mass. The specific structure of the resulting mass equation, supplemented by the additional requirement of a positive-definite gluon mass, imposes a rat…
Pinch technique for Schwinger-Dyson equations
40 pages, 11 figures.-- ISI Article Identifier: 000245922000041.-- ArXiv pre-print available at: http://arxiv.org/abs/hep-ph/0611354
Self-Trapped Localized Modes in Photonic Crystal Fibers
We demonstrate the existence of self-trapped localized modes in photonic crystal fibers. We analyze these solutions in terms of the parameters of the photonic crystal cladding and the nonlinear coupling.
Renormalization group analysis of the gluon mass equation
In the present work we carry out a systematic study of the renormalization properties of the integral equation that determines the momentum evolution of the effective gluon mass. A detailed, all-order analysis of the complete kernel appearing in this particular equation reveals that the renormalization procedure may be accomplished through the sole use of ingredients known from the standard perturbative treatment of the theory, with no additional assumptions. However, the subtle interplay of terms operating at the level of the exact equation gets distorted by the approximations usually employed when evaluating the aforementioned kernel. This fact is reflected in the form of the obtained sol…
The Pinch Technique and its Applications to Non-Abelian Gauge Theories
Non-Abelian gauge theories, such as quantum chromodynamics (QCD) or electroweak theory, are best studied with the aid of Green's functions that are gauge-invariant off-shell, but unlike for the photon in quantum electrodynamics, conventional graphical constructions fail. The Pinch Technique provides a systematic framework for constructing such Green's functions, and has many useful applications. Beginning with elementary one-loop examples, this book goes on to extend the method to all orders, showing that the Pinch Technique is equivalent to calculations in the background field Feynman gauge. The Pinch Technique Schwinger-Dyson equations are derived, and used to show how a dynamical gluon m…
Appendix: Feynman rules
Gluon mass generation in the presence of dynamical quarks
We study in detail the impact of dynamical quarks on the gluon mass generation mechanism, in the Landau gauge, for the case of a small number of quark families. As in earlier considerations, we assume that the main bulk of the unquenching corrections to the gluon propagator originates from the fully dressed quark-loop diagram. The nonperturbative evaluation of this diagram provides the key relation that expresses the unquenched gluon propagator as a deviation from its quenched counterpart. This relation is subsequently coupled to the integral equation that controls the momentum evolution of the effective gluon mass, which contains a single adjustable parameter; this constitutes a major impr…
Gauge-independent off-shell fermion self-energies at two loops: The cases of QED and QCD
We use the pinch technique formalism to construct the gauge-independent off-shell two-loop fermion self-energy, both for Abelian (QED) and non-Abelian (QCD) gauge theories. The new key observation is that all contributions originating from the longitudinal parts of gauge boson propagators, by virtue of the elementary tree-level Ward identities they trigger, give rise to effective vertices, which do not exist in the original Lagrangian; all such vertices cancel diagrammatically inside physical quantities, such as current correlation functions or S-matrix elements. We present two different, but complementary derivations: First, we explicitly track down the aforementioned cancellations inside …
Pinch technique to all orders
The generalization of the pinch technique to all orders in perturbation theory is presented. The effective Green's functions constructed with this procedure are singled out in a unique way through the full exploitation of the underlying Becchi-Rouet-Stora-Tyutin symmetry. A simple all-order correspondence between the pinch technique and the background field method in the Feynman gauge is established. Comment: 10 pages, 4 figures; one reference added, typos corrected; final version to match the pubblished one
QCD effective charges from lattice data
We use recent lattice data on the gluon and ghost propagators, as well as the Kugo-Ojima function, in order to extract the non-perturbative behavior of two particular definitions of the QCD effective charge, one based on the pinch technique construction, and one obtained from the standard ghost-gluon vertex. The construction relies crucially on the definition of two dimensionful quantities, which are invariant under the renormalization group, and are built out of very particular combinations of the aforementioned Green's functions. The main non-perturbative feature of both effective charges, encoded in the infrared finiteness of the gluon propagator and ghost dressing function used in their…
Gauge invariant Ansatz for a special three-gluon vertex
We construct a general Ansatz for the three-particle vertex describing the interaction of one background and two quantum gluons, by simultaneously solving the Ward and Slavnov-Taylor identities it satisfies. This vertex is known to be essential for the gauge-invariant truncation of the Schwinger-Dyson equations of QCD, based on the pinch technique and the background field method. A key step in this construction is the formal derivation of a set of crucial constraints (shown to be valid to all orders), relating the various form factors of the ghost Green's functions appearing in the aforementioned Slavnov-Taylor identity. When inserted into the Schwinger-Dyson equation for the gluon propagat…
Three-gluon Green functions: low-momentum instanton dominance and zero-crossing
International audience; We will report on a some efforts recently made in order to gain a better understanding of some IR properties of the 3-point gluon Green function by following both lattice and continuum QCD approaches.
Unquenching the gluon propagator with Schwinger-Dyson equations
In this article we use the Schwinger-Dyson equations to compute the nonperturbative modifications caused to the infrared finite gluon propagator (in the Landau gauge) by the inclusion of a small number of quark families. Our basic operating assumption is that the main bulk of the effect stems from the "one-loop dressed" quark loop contributing to the full gluon self-energy. This quark loop is then calculated, using as basic ingredients the full quark propagator and quark-gluon vertex; for the quark propagator we use the solution obtained from the quark gap equation, while for the vertex we employ suitable Ans\"atze, which guarantee the transversality of the answer. The resulting effect is i…
All-order equation of the effective gluon mass
We present the general derivation of the full non-perturbative equation that governs the momentum evolution of the dynamically generated gluon mass, in the Landau gauge. The entire construction hinges crucially on the inclusion of longitudinally coupled vertices containing massless poles of non-perturbative origin, which preserve the form of the fundamental Slavnov-Taylor identities of the theory. The mass equation is obtained from a previously unexplored version of the Schwinger-Dyson equation for the gluon propagator, particular to the PT-BFM formalism, which involves a reduced number of "two-loop dressed" diagrams, thus simplifying the calculational task considerably. The two-loop contri…
CP violation through particle mixing and theH-Alineshape
We consider the possibility of looking for CP-mixing effects in two-Higgs doublet models (and particularly in the MSSM) by studying the lineshape of the CP-even (H) and CP-odd (A) neutral scalars. In most cases H and A come quite degenerate in mass, and their s-channel production would lead to nearly overlapping resonances. CP-violating effects may connect these two Higgs bosons, giving origin to one-loop particle mixing, which, due to their mass proximity, can be resonantly enhanced. The corresponding transition amplitude contains then CP-even and CP-odd components; besides the signal of intereference between both amplitudes, leading to a CP-odd asymmetry, we propose to look for the mixing…
Vortex solitons in photonic crystal fibers
We demonstrate the existence of vortex soliton solutions in photonic crystal fibers. We analyze the role played by the photonic crystal fiber defect in the generation of optical vortices. An analytical prediction for the angular dependence of the amplitude and phase of the vortex solution based on group theory is also provided. Furthermore, all the analysis is performed in the non-paraxial regime.
Gluon and ghost propagators in the Landau gauge: Deriving lattice results from Schwinger-Dyson equations
We show that the application of a novel gauge invariant truncation scheme to the Schwinger-Dyson equations of QCD leads, in the Landau gauge, to an infrared finite gluon propagator and a divergent ghost propagator, in qualitative agreement with recent lattice data.
Gauge-invariant truncation scheme for the Schwinger-Dyson equations of QCD
We present a new truncation scheme for the Schwinger-Dyson equations of QCD that respects gauge invariance at any level of the dressed loop expansion. When applied to the gluon self-energy, it allows for its non-perturbative treatment without compromising the transversality of the solution, even when entire sets of diagrams (most notably the ghost loops) are omitted, or treated perturbatively.
Effective charge from lattice QCD
Using lattice configurations for quantum chromodynamics (QCD) generated with three domain-wall fermions at a physical pion mass, we obtain a parameter-free prediction of QCD's renormalisation-group-invariant process-independent effective charge, $\hat\alpha(k^2)$. Owing to the dynamical breaking of scale invariance, evident in the emergence of a gluon mass-scale, this coupling saturates at infrared momenta: $\hat\alpha(0)/\pi=0.97(4)$. Amongst other things: $\hat\alpha(k^2)$ is almost identical to the process-dependent (PD) effective charge defined via the Bjorken sum rule; and also that PD charge which, employed in the one-loop evolution equations, delivers agreement between pion parton di…
Gluon mass through ghost synergy
In this work we compute, at the "one-loop-dressed" level, the nonperturbative contribution of the ghost loops to the self-energy of the gluon propagator, in the Landau gauge. This is accomplished within the PT-BFM formalism, which guarantees the gauge-invariance of the emerging answer. In particular, the contribution of the ghost-loops is automatically transverse, by virtue of the QED-like Ward identities satisfied in this framework. Using as nonperturbative input the available lattice data for the ghost dressing function, we show that the ghost contributions have a rather sizable effect on the overall shape of the gluon propagator, both for $d=3,4$. Then, by exploiting a recently introduce…
Single spin asymmetry parameter from deeply virtual compton scattering of hadrons up to twist - three accuracy. 1. Pion case
The study of deeply virtual Compton scattering (DVCS) has shown that electromagnetic gauge invariance requires, to leading order, not only twist-two but additional twist-three contributions. We apply this analysis and, using the Ellis-Furmanski-Petronzio factorization scheme, compute the single- (electron) spin asymmetry arising in the collision of longitudinally polarized electrons with hadrons up to twist-3 accuracy. In order to simplify the kinematics we restrict the actual calculation to pions in the chiral limit. The process is described in terms of the generalized parton distribution functions which we obtain within a bag model framework.
Leaving the BPS bound: Tunneling of classically saturated solitons
We discuss quantum tunneling between classically BPS saturated solitons in two-dimensional theories with N=2 supersymmetry and a compact space dimension. Genuine BPS states form shortened multiplets of dimension two. In the models we consider there are two degenerate shortened multiplets at the classical level, but there is no obstruction to pairing up through quantum tunneling. The tunneling amplitude in the imaginary time is described by instantons. We find that the instanton is nothing but the 1/4 BPS saturated ``wall junction,'' considered previously in the literature in other contexts. Two central charges of the superalgebra allow us to calculate the instanton action without finding th…
Nonperturbative gluon and ghost propagators for d=3 Yang-Mills theory
We study a manifestly gauge-invariant set of Schwinger-Dyson equations to determine the non-perturbative dynamics of the gluon and ghost propagators in d = 3 Yang-Mills theory. The use of the well-known Schwinger mechanism, in the Landau gauge leads to the dynamical generation of a mass for the gauge boson (gluon in d = 3), which, in turn, gives rise to an infrared finite gluon propagator and ghost dressing function. The propagators obtained from the numerical solution of these nonperturbative equations are in very good agreement with the results of SU(2) lattice simulations. We would like to thank A. Cucchieri and T. Mendes for kindly making their lattice results available to us, and for t…