0000000001279186
AUTHOR
Sébastien Alvarez
Entropy, Lyapunov exponents, and rigidity of group actions
This text is an expanded series of lecture notes based on a 5-hour course given at the workshop entitled "Workshop for young researchers: Groups acting on manifolds" held in Teres\'opolis, Brazil in June 2016. The course introduced a number of classical tools in smooth ergodic theory -- particularly Lyapunov exponents and metric entropy -- as tools to study rigidity properties of group actions on manifolds. We do not present comprehensive treatment of group actions or general rigidity programs. Rather, we focus on two rigidity results in higher-rank dynamics: the measure rigidity theorem for affine Anosov abelian actions on tori due to A. Katok and R. Spatzier [Ergodic Theory Dynam. Systems…
Gibbs and harmonic measures for foliations with negatively curved leaves
Pas de résumé en anglais.
Existence of common zeros for commuting vector fields on 3‐manifolds II. Solving global difficulties
We address the following conjecture about the existence of common zeros for commuting vector fields in dimension three: if $X,Y$ are two $C^1$ commuting vector fields on a $3$-manifold $M$, and $U$ is a relatively compact open such that $X$ does not vanish on the boundary of $U$ and has a non vanishing Poincar\'e-Hopf index in $U$, then $X$ and $Y$ have a common zero inside $U$. We prove this conjecture when $X$ and $Y$ are of class $C^3$ and every periodic orbit of $Y$ along which $X$ and $Y$ are collinear is partially hyperbolic. We also prove the conjecture, still in the $C^3$ setting, assuming that the flow $Y$ leaves invariant a transverse plane field. These results shed new light on t…
Discretization of harmonic measures for foliated bundles
We prove in this note that there is, for some foliated bundles, a bijective correspondance between Garnett's harmonic measures and measures on the fiber that are stationary for some probability measure on the holonomy group. As a consequence, we show the uniqueness of the harmonic measure in the case of some foliations transverse to projective fiber bundles.
Gibbs and harmonic measures for foliations with negatively curved leaves
In this thesis we develop a notion of Gibbs measure for the geodesic flow tangent to a foliated bundle over a compact and negatively curved basis. We also develop a notion of F-harmonic measure and prove that there exists a natural bijective correspondence between the two. For projective foliated bundles with sphere-fibers without transverse invariant measure, we show the uniqueness of these measures for any Hölder potential on the basis. In that case we also prove that F-harmonic measures are realized as weighted limits of large balls tangent to the leaves and that their conditional measures on the fibers are limits of weighted averages on the orbits of the holonomy group.