0000000001284576

AUTHOR

Huijie Zheng

Photoluminescence at the ground-state level anticrossing of the nitrogen-vacancy center in diamond: A comprehensive study

Physical review / B 103(3), 035307 (2021). doi:10.1103/PhysRevB.103.035307

research product

High homogeneity permanent magnet for diamond magnetometry

Abstract Halbach magnets are a source of homogeneous magnetic field in an enclosed volume while keeping stray fields at a minimum. Here, we present the design, construction, and characterization for a stack of two Halbach rings with 10 cm inner diameter providing a homogeneous ( 100 ppm over 1.0 × 1.0 × 0.5 cm 3 ) magnetic field of around 105 mT, which will be used for a diamond based microwave-free widefield imaging setup. The final characterization is performed with a novel fiberized diamond-based sensor on a 3D translation stage documenting the high homogeneity of the constructed Halbach array and its suitability for the proposed use.

research product

Fiberized diamond-based vector magnetometers

Frontiers 2, 732748 (2021). doi:10.3389/fphot.2021.732748

research product

Determination of local defect density in diamond by double electron-electron resonance

Magnetic impurities in diamond influence the relaxation properties and thus limit the sensitivity of magnetic, electric, strain, and temperature sensors based on nitrogen-vacancy color centers. Diamond samples may exhibit significant spatial variations in the impurity concentrations hindering the quantitative analysis of relaxation pathways. Here, we present a local measurement technique which can be used to determine the concentration of various species of defects by utilizing double electron-electron resonance. This method will help to improve the understanding of the physics underlying spin relaxation and guide the development of diamond samples, as well as offering protocols for optimiz…

research product

Hyperfine level structure in nitrogen-vacancy centers near the ground-state level anticrossing

Energy levels of nitrogen-vacancy centers in diamond were investigated using optically detected magnetic-resonance spectroscopy near the electronic ground-state level anticrossing (GSLAC) at an axial magnetic field around 102.4~mT in diamond samples with a nitrogen concentration of 1~ppm and 200~ppm. By applying radiowaves in the frequency ranges from 0 to 40 MHz and from 5.6 to 5.9 GHz, we observed transitions that involve energy levels mixed by the hyperfine interaction. We developed a theoretical model that describes the level mixing, transition energies, and transition strengths between the ground-state sublevels, including the coupling to the nuclear spin of the NV center\textquotesing…

research product

Fundaments of photoelectric readout of spin states in diamond

Abstract The chapter “Fundaments of photoelectric readout of spin states in diamond” deals with the detection of NV centre spins in diamond using the photoelectric detection of magnetic resonances (PDMR) method, introduced in a series of recent publications. It provides in particular insights into the physics of electronic transitions of the NV center, leading to the free carrier generation, and discusses methodologies how to implement the photocurrent detection principles in the dynamically evolving field of quantum technologies. Recent results on the single electron and the single nuclear spin qubits photoelectric readout are presented, along with a microwave-free NV magnetometry techniqu…

research product

Zero-field magnetometry based on nitrogen-vacancy ensembles in diamond

Ensembles of nitrogen-vacancy (NV) centers in diamonds are widely utilized for magnetometry, magnetic-field imaging and magnetic-resonance detection. They have not been used for magnetometry at zero ambient field because Zeeman sublevels lose first-order sensitivity to magnetic fields as they are mixed due to crystal strain or electric fields. In this work, we realize a zero-field (ZF) magnetometer using polarization-selective microwave excitation in a 12C-enriched HPHT crystal sample. We employ circularly polarized microwaves to address specific transitions in the optically detected magnetic resonance and perform magnetometry with a noise floor of 250 pT/Hz^(1/2). This technique opens the …

research product

Eddy-Current Imaging with Nitrogen-Vacancy Centers in Diamond

We demonstrate microwave-free eddy-current imaging using nitrogen-vacancy centers in diamond. By detecting the eddy-current induced magnetic field of conductive samples, we can distinguish between different materials and shapes and identify structural defects. Our technique allows for the discrimination of different materials according to their conductivity. The sensitivity of the measurements is calculated as 8$\times 10 ^{5}$\,S/m\,$\sqrt[]{\textrm{Hz}}$ at 3.5\,MHz, for a cylindrical sample with radius $r_0$\,=\,1\,mm and height $h$\,=\,0.1\,mm (volume $\sim$\,0.3\,mm$^3$), at a distance of 0.5\,mm. In comparison with existing technologies, the diamond-based device exhibits a superior ba…

research product

Microwave-free magnetometry with nitrogen-vacancy centers in diamond

We use magnetic-field-dependent features in the photoluminescence of negatively charged nitrogen-vacancy centers to measure magnetic fields without the use of microwaves. In particular, we present a magnetometer based on the level anti-crossing in the triplet ground state at 102.4 mT with a demonstrated noise floor of 6 nT/$\sqrt{\text{Hz}}$, limited by the intensity noise of the laser and the performance of the background-field power supply. The technique presented here can be useful in applications where the sensor is placed closed to conductive materials, e.g. magnetic induction tomography or magnetic field mapping, and in remote-sensing applications since principally no electrical acces…

research product

Battery characterization via eddy-current imaging with nitrogen-vacancy centers in diamond

Sensitive and accurate diagnostic technologies with magnetic sensors are of great importance for identifying and localizing defects of rechargeable solid batteries in a noninvasive detection. We demonstrate a microwave-free AC magnetometry method with negatively charged NV centers in diamond based on a cross-relaxation feature between NV centers and individual substitutional nitrogen (P1) centers occurring at 51.2 mT. We apply the technique to non-destructive solid-state battery imaging. By detecting the eddy-current-induced magnetic field of the battery, we distinguish a defect on the external electrode and identify structural anomalies within the battery body. The achieved spatial resolut…

research product

Level anti-crossing magnetometry with color centers in diamond

Recent developments in magnetic field sensing with negatively charged nitrogen-vacancy centers (NV) in diamond employ magnetic-field (MF) dependent features in the photoluminescence (PL) and eliminate the need for microwaves (MW). Here, we study two approaches towards improving the magnetometric sensitivity using the ground-state level anti-crossing (GSLAC) feature of the NV center at a background MF of 102.4\,mT. Following the first approach, we investigate the feature parameters for precise alignment in a dilute diamond sample; the second approach extends the sensing protocol into absorption via detection of the GSLAC in the diamond transmission of a 1042\,nm laser beam. This leads to an …

research product

Microwave-free vector magnetometry with nitrogen-vacancy centers along a single axis in diamond

Sensing vector magnetic fields is critical to many applications in fundamental physics, bioimaging, and material science. Magnetic-field sensors exploiting nitrogen-vacancy (NV) centers are particularly compelling as they offer high sensitivity and spatial resolution even at nanoscale. Achieving vector magnetometry has, however, often required applying microwaves sequentially or simultaneously, limiting the sensors' applications under cryogenic temperature. Here we propose and demonstrate a microwave-free vector magnetometer that simultaneously measures all Cartesian components of a magnetic field using NV ensembles in diamond. In particular, the present magnetometer leverages the level ant…

research product

Electrical readout microwave-free sensing with diamond

While nitrogen-vacancy (NV-) centers have been extensively investigated in the context of spin-based quantum technologies, the spin-state readout is conventionally performed optically, which may limit miniaturization and scalability. Here, we report photoelectric readout of ground-state cross-relaxation features, which serves as a method for measuring electron spin resonance spectra of nanoscale electronic environments and also for microwave-free sensing. As a proof of concept, by systematically tuning NV centers into resonance with the target electronic system, we extracted the spectra for the P1 electronic spin bath in diamond. Such detection may enable probing optically inactive defects …

research product

Photoluminescence at the ground state level anticrossing of the nitrogen-vacancy center in diamond

The nitrogen-vacancy center (NV center) in diamond at magnetic fields corresponding to the ground state level anticrossing (GSLAC) region gives rise to rich photoluminescence (PL) signals due to the vanishing energy gap between the electron spin states, which enables to have an effect on the NV center's luminescence for a broad variety of environmental couplings. In this article we report on the GSLAC photoluminescence signature of NV ensembles in different spin environments at various external fields. We investigate the effects of transverse electric and magnetic fields, P1 centers, NV centers, and the $^{13}$C nuclear spins, each of which gives rise to a unique PL signature at the GSLAC. …

research product