6533b837fe1ef96bd12a205b

RESEARCH PRODUCT

Microwave-free magnetometry with nitrogen-vacancy centers in diamond

Arne WickenbrockDmitry BudkerVictor M. AcostaHuijie ZhengS. AfachLykourgos BougasNathan LeeferAndrey Jarmola

subject

TechnologyPhysics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)MagnetometerFOS: Physical sciences02 engineering and technologyengineering.material01 natural scienceslaw.inventionEngineeringlaw0103 physical sciencescond-mat.mes-hallMesoscale and Nanoscale Physics (cond-mat.mes-hall)010306 general physicsphysics.ins-detApplied PhysicsPhysicsCondensed Matter - Mesoscale and Nanoscale Physicsbusiness.industryDiamondInstrumentation and Detectors (physics.ins-det)021001 nanoscience & nanotechnologyNoise floorMagnetic fieldPhysical SciencesengineeringOptoelectronicsMagnetic induction tomographyphysics.optics0210 nano-technologybusinessGround stateNoise (radio)MicrowavePhysics - OpticsOptics (physics.optics)

description

We use magnetic-field-dependent features in the photoluminescence of negatively charged nitrogen-vacancy centers to measure magnetic fields without the use of microwaves. In particular, we present a magnetometer based on the level anti-crossing in the triplet ground state at 102.4 mT with a demonstrated noise floor of 6 nT/$\sqrt{\text{Hz}}$, limited by the intensity noise of the laser and the performance of the background-field power supply. The technique presented here can be useful in applications where the sensor is placed closed to conductive materials, e.g. magnetic induction tomography or magnetic field mapping, and in remote-sensing applications since principally no electrical access is needed.

https://dx.doi.org/10.48550/arxiv.1606.03070