0000000001293579

AUTHOR

Petteri Laine

Co-precipitation of Mg-doped Ni0.8Co0.1Mn0.1(OH)₂:effect of magnesium doping and washing on the battery cell performance

Co-precipitation of Ni0.8Co0.1Mn0.1(OH)2 (NCM811) and Mg-doped (0.25 wt% and 0.5 wt%) NCM811 precursors is carried out from concentrated metal sulphate solutions. In this paper, the aim is to study the role of magnesium dopant in the co-precipitation step of NCM811, the cathode active material and further the Li-ion battery cell performance. Based on the results, magnesium was fully co-precipitated in the NCM811 precursors, as expected from thermodynamic calculations. The presence of magnesium in these precursors was also confirmed by several characterization methods and magnesium was evenly distributed in the sample. It was observed that tapped density decreased and surface area increased …

research product

Correlation of aluminum doping and lithiation temperature with electrochemical performance of LiNi1-xAlxO2 cathode material

Abstract This article presents a process for producing LiNi1-xAlxO2 (0 <  ×  < 0.05) cathode material with high capacity and enhanced cycle properties of 145 mAh/g after 600 cycles. The LiNi1-xAlxO2 (0 <  ×  < 0.05) cathode material is prepared by mixing coprecipitated Ni(OH)2 with LiOH and Al(OH)3, followed by lithiation at temperature range of 650–710 °C, after which any residual lithium from lithiation is washed from the particle surfaces. Electrochemical performance was studied within full-cell and half-cell application; in addition, different material characterization methods were carried out to explain structure changes when certain amount of aluminum is introduced in the …

research product

Precipitation and Calcination of High-Capacity LiNiO2 Cathode Material for Lithium-Ion Batteries

This article presents the electrochemical results that can be achieved for pure LiNiO2 cathode material prepared with a simple, low-cost, and efficient process. The results clarify the roles of the process parameters, precipitation temperature, and lithiation temperature in the performance of high-quality LiNiO2 cathode material. Ni(OH)2 with a spherical morphology was precipitated at different temperatures and mixed with LiOH to synthesize the LiNiO2 cathode material. The LiNiO2 calcination temperature was optimized to achieve a high initial discharge capacity of 231.7 mAh/g (0.1 C/2.6 V) with a first cycle efficiency of 91.3% and retaining a capacity of 135 mAh/g after 400 cycles. These a…

research product

Effect of Reaction Conditions on the Coprecipitation of Ni(OH)2 for Lithium-Ion Batteries

Electrochemical performance of cathode active materials (CAMs) is dependent on the properties of coprecipitated precursors (pCAMs). This is a sensitive process affected by several reaction parameters such as temperature, pH, concentration of reactants, agitation rate, and residence time. In this paper, the effect of parameters influencing the particle size growth and the physical properties, such as particle morphology and tapped density, was studied in the coprecipitation of Ni(OH)2. Formation of a homogeneous population with narrow particle size distribution was observed, followed by a more heterogeneous population of dense particles. Ammonia concentration and residence time had significa…

research product