0000000001295676
AUTHOR
A Nomerotski
B* production in Z decays
The decay B*→Bγ has been observed with the DELPHI detector at LEP, where the B* meson is produced in Z boson decays. The combination of inclusively reconstructed B mesons with well-measured converted photons yields a measurement of the flavour-averaged B*-B mass difference of 45.5±0.3 (stat.) ±0.8 (syst.) MeV/c2. 95% confidence level upper limits at 6 MeV/c2 are placed on both the isospin (i.e. B+-B0) and the Bs-Bud splitting of the mass difference. The production ratio of B* to B mesons in Z decays is measured to be 0.72±0.03 (stat.) ±0.06 (syst.). Limits on the production cross-section of other hypothetical excited B hadron states decaying radiatively are established. The differential B* …
Investigation of the splitting of quark and gluon jets
The splitting processes in identified quark and gluon jets are investigated using longitudinal and transverse observables. The jets are selected from symmetric three-jet events measured in Z decays L with the {\sc Delphi} detector in 1991-1994. Gluon jets are identified using heavy quark anti-tagging. Scaling violations in identified gluon jets are observed for the first time. The scale energy dependence of the gluon fragmentation function is found to be about two times larger than for the corresponding quark jets, consistent with the QCD expectation $C_A/C_F$. The primary splitting of gluons and quarks into subjets agrees with fragmentation models and, for specific regions of the jet resol…
Measurements of the Lineshape of the $Z^{0}$ and Determination of Electroweak Parameters from its Hadronic and Leptonic Decays
Abstract: During the LEP running periods in 1990 and 1991 DELPHI has accumulated approximately 450000 Z0 decays into hadrons and charged leptons. The increased event statistics coupled with improved analysis techniques and improved knowledge of the LEP beam energies permit significantly better measurements of the mass and width of the Z0 resonance. Model independent fits to the cross sections and leptonic forward-backward asymmetries yield the following Z0 parameters: the mass and total width M(Z) = 91.187 +/- 0.009 GeV, GAMMA(Z) = 2.486 +/- 0.012 GeV, the hadronic and leptonic partial widths GAMMA(had) = 1.725 +/- 0.012GeV, GAMMA(l) = 83.01 +/- 0.52 MeV, the invisible width GAMMA(inv) = 51…
Limits on neutral Higgs boson production in the forward region in $pp$ collisions at $\sqrt{s} = 7$ TeV
Limits on the cross-section times branching fraction for neutral Higgs bosons, produced in p p collisions at root s = 7 TeV, and decaying to two tau leptons with pseudorapidities between 2.0 and 4.5, are presented. The result is based on a dataset, corresponding to an integrated luminosity of 1.0 fb(-1), collected with the LHCb detector. Candidates are identified by reconstructing final states with two muons, a muon and an electron, a muon and a hadron, or an electron and a hadron. A model independent upper limit at the 95% confidence level is set on a neutral Higgs boson cross-section times branching fraction. It varies from 8.6 pb for a Higgs boson mass of 90 GeV to 0.7 pb for a Higgs bos…
DETERMINATION OF ALPHA(S) FOR B-QUARKS AT THE Z(0) RESONANCE
The strong coupling constant for b quarks has been determined, and its flavour independence, as predicted by QCD, investigated. The analysis involved events with lepton candidates selected from approximately 356 000 hadronic decays of the Z0, collected by the DELPHI detector at LEP in 1990 and 199 1. A method based on a direct comparison of the three-jet fraction in a b enriched sample, selected by requiring leptons with large momenta and transverse momenta, to that of the entire hadronic sample, illustrated the significant effect of the b quark mass on the multi-jet cross section, and verified the flavour independence of the strong coupling constant to an accuracy of +/- 6%. A second proce…
Measurement of inclusive pi(0) production in hadronic Z(0) decays
An analysis is presented of inclusive \pi^0 production in Z^0 decays measured with the DELPHI detector. At low energies, \pi^0 decays are reconstructed by \linebreak using pairs of converted photons and combinations of converted photons and photons reconstructed in the barrel electromagnetic calorimeter (HPC). At high energies (up to x_p = 2 \cdot p_{\pi}/\sqrt{s} = 0.75) the excellent granularity of the HPC is exploited to search for two-photon substructures in single showers. The inclusive differential cross section is measured as a function of energy for {q\overline q} and {b \bar b} events. The number of \pi^0's per hadronic Z^0 event is N(\pi^0)/ Z_{had}^0 = 9.2 \pm 0.2 \mbox{(stat)} \…
DETERMINATION OF ALPHA-S FROM THE SCALING VIOLATION IN THE FRAGMENTATION FUNCTIONS IN E+E- ANNIHILATION
A determination of the hadronic fragmentation functions of the Z0 boson is presented from a study of the inclusive hadron production with the DELPHI detector at LEP. These fragmentation functions were compared with the ones at lower energies, thus covering data in a large kinematic range: 196 less-than-or-equal-to Q2 less-than-or-equal-to 8312 GeV2 and x (= p(h)/E(beam)) > 0.08. A large scaling violation was observed, which was used to extract the strong coupling constant in second order QCD: alpha(s)(M(Z)) = 0.118 +/- 0.005. The corresponding QCD scale for five quark flavours is: LAMBDA(MS)(5)BAR = 230 +/- 60 MeV.
Search for new particles in the two-jet decay channel with the DØ detector
We present the results of a search for the production of new particles decaying into two jets in pp collisions at √s = 1.8 TeV, using the DØ 1992-1995 data set corresponding to 109 pb-1. We exclude at the 95% confidence level the production of excited quarks (q*) with masses below 775 GeV/c2, the most restrictive limit to date. We also exclude standard-model-like W′ (Z′) bosons with masses between 300 and 800 GeV/c2 (400 and 640 GeV/c2). A. W√ boson with mass <786 GeV/c2 has been excluded by previous measurements, and our lower limit is therefore the most stringent to date. © 2004 The American Physical Society.
Measurement of Event Shape and Inclusive Distributions at $\sqrt{s} =$ 130 and 136 GeV
Inclusive charged particle and event shape distributions are measured using 321 hadronic events collected with the DELPHI experiment at LEP at effective centre of mass energies of 130 to 136 GeV. These distributions are presented and compared to data at lower energies, in particular to the precise Z data. Fragmentation models describe the observed changes of the distributions well. The energy dependence of the means of the event shape variables can also be described using second order QCD plus power terms. A method independent of fragmentation model corrections is used to determine $\alpha_s$ from the energy dependence of the mean thrust and heavy jet mass. It is measured to be: % %\alpha_s…
Direct measurement of the W boson decay width
Based on 85 pb-1 data of p (p) over bar collisions at roots=1.8 TeV collected using the D empty set detector at Fermilab during the 1994-1995 run of the Tevatron, we present a direct measurement of the total decay width of the W boson Gamma(W). The width is determined from the transverse mass spectrum in the W-->e+nu(e) decay channel and found to be Gamma(W)=2.23(-0.14)(+0.15)(stat)+/-0.10(syst) GeV, consistent with the expectation from the standard model.
Measurement of the charged particle multiplicity of weakly decaying B hadrons
From the Z decays recorded in 1994 and 1995 by the DELPHI detector at LEP, the charged particle multiplicity of weakly decaying B hadrons was measured to be: 4.97 +/- 0.03 +/- 0.06 excluding the K-o and Lambda decay products. (C) 1998 Published by Elsevier Science B.V. All rights reserved.
Measurement of the B-0 -> K*(0) e(+) e(-) branching fraction at low dilepton mass
The branching fraction of the rare decay B-0 -> K*(0) e(+) e(-) in the dilepton mass region from 30 to 1000 MeV/c(2) has been measured by the LHCb experiment, using pp collision data, corresponding to an integrated luminosity of 1.0 fb(-1), at a centre-of-mass energy of 7 TeV. The decay mode B-0 -> J/psi (e(+) e(-)) K*(0) is utilized as a normalization channel. The branching fraction B(B-0 -> K*(0) e(+) e(-)) is measured to be B(B-0 -> K*(0) e(+) e(-))(30-1000 MeV/c2) = (3.1(-0.8)(-0.3)(+0.9)(+0.2) +/- 0.2) x 10(-7) where the fi rst error is statistical, the second is systematic, and the third comes from the uncertainties on the B-0 -> J/K*(0) and J/psi -> e(+) e(-) branching fractions.