0000000001299253
AUTHOR
Euan K. Brechin
Enhancement of the Intermolecular Magnetic Exchange through Halogen···Halogen interactions in Bisadeninium Rhenium(IV) Salts
Two novel ReIV salts of general formula [H2ade]2[ReIVX6]X2·4H2O [H2ade2+ = 9H-adenine-1,7-diium; X = Cl(1) and Br(2)] have been synthesized and magneto-structurally characterized. 1 and 2 are isostructural salts that crystallize in the orthorhombic system with space group Fdd2. Both compounds are made up of discrete mononuclear [ReIVX6]2- and X- anions and doubly protonated adenine cations. The six-coordinate rhenium(IV) ion is bonded to six halide ligands [X = Cl (1) and Br (2)] in an octahedral geometry. Short intermolecular ReIV−X···X−ReIV interactions, as well as ReIV−X···H−N(H2ade) and ReIV−X···H−Ow hydrogen bonds, are present in the crystal lattice of 1 and 2. Magnetic suscep-tibility…
Touching the upper limit for ferromagnetic interactions in hetero-bridged dinuclear [Cu-2(II)] complexes using a novel N-5-dinucleating ligand bearing an endogenous monoatomic amido(R-NH-)-bridging group
A novel N-5-dinucleating ligand 4-amino-3,5-bis(bipyridine-2-yl)-1,2,4-triazole allows the preparation for the first time, and under mild conditions, of single and mixed amido(R-NH-)-bridged copper(II) complexes, the latter exhibiting very strong ferromagnetic coupling.
Dilution-Triggered SMM Behavior under Zero Field in a Luminescent Zn2Dy2 Tetranuclear Complex Incorporating Carbonato-Bridging Ligands Derived from Atmospheric CO2 Fixation
The synthesis, structure, magnetic, and luminescence properties of the Zn2Dy2 tetranuclear complex of formula {(mu(3)-CO3)2[Zn(mu-L)Dy(NO3)}(2)}center dot 4CH(3)OH (1), where H2L is the compartmental ligand N,N',N"-trimethyl-N,N"-bis(2-hydroxy-3-methoxy-5-methylbenzyl)diethylenetriamine, are reported. The carbonate anions that bridge two Zn(mu-L)Dy units come from the atmospheric CO2 fixation in a basic medium. Fast quantum tunneling relaxation of the magnetization (QTM) is very effective in this compound, so that single-molecule magnet (SMM) behavior is only observed in the presence of an applied dc field of 1000 Oe, which is able to partly suppress the QTM relaxation process. At variance,…
Hexakis(diethylacetamide)iron(II) hexahalorhenate(IV) ionic salts: X-ray structures and magnetic properties
Two novel Fe<sup>II</sup>-Re<sup>IV</sup> compounds of general formula [Fe<sup>II</sup>(DEA)<inf>6</inf>][Re<sup>IV</sup>X<inf>6</inf>] where DEA = diethylacetamide and X = Cl (1) and Br (2) have been prepared and magnetostructurally characterised. Complexes 1 and 2 are isomorphic ionic salts that crystallise in the trigonal crystal system with space group R(-3). The rhenium(IV) ion in 1 and 2 is six-coordinate with six chloro (1) or bromo (2) ligands building a regular octahedral chromophore. The Fe<sup>II</sup> ion is also six-coordinate, and bonded to six oxygen atoms from six DEA molecules. [Fe<sup>…
Magneto-structural correlations in a family of ReIVCuII chains based on the hexachlororhenate(IV) metalloligand
Six novel one-dimensional chloro-bridged ReIVCuII complexes of formula {[Cu(L)4][ReCl6]}n, where L = imidazole (Imi, 1), 1-methylimidazole (Meim, 2), 1-vinylimidazole (Vim, 3), 1-butylimidazole (Buim, 4), 1-vinyl-1,2,4-triazole (Vtri, 5) and N,N’-dimethylformamide (DMF, 6) are characterised structurally, magnetically and theoretically. The structures exhibit significant differences in Cu–Cl bond lengths and Re–Cl–Cu bridging angles, resulting in large differences in the nature and magnitude of magnetic exchange interactions between the ReIV and CuII ions. Theoretical calculations reveal the coupling to be primarily ferromagnetic, increasing in magnitude as the bridging angle becomes smaller…
A [Cr2Ni] coordination polymer: slow relaxation of magnetization in quasi-one-dimensional ferromagnetic chains
The reaction of [Cr3IIIO(OAc)6(H2O)3]NO3·AcOH with 2-hydroxynaphthaldehyde, 2-amino-isobutyric acid and NiCl2·6H2O in MeOH, under basic and solvothermal conditions, led to the formation of the quasi-1D coordination polymer {[CrIII2NiII(L)4(MeOH)2]}n (where L = the dianion of the Schiff base between 2-hydroxynaphthaldehyde and 2-amino-isobutyric acid), which behaves as a ferromagnetic chain, displaying slow relaxation of magnetization.
Ferromagnetic exchange in a twisted, oxime-bridged [mniii2] dimer
Journal article The dimeric complex [MnIII2(Naphth-sao)2(Naphth-saoH)2(MeOH)2][middle dot]4MeOH (1[middle dot]4MeOH), acts as a simple model complex with which to examine the magneto-structural relationship in polymetallic, oxime-bridged MnIII complexes. Dc magnetic susceptibility studies reveal that ferromagnetic exchange is mediated through the heavily twisted Mn-O-N-Mn moiety (J = +1.24 cm-1) with magnetisation measurements at low temperatures and high fields suggesting significant anisotropy. Simulations of high field, high frequency EPR data reveal a single ion anisotropy, D(MnIII) = -3.94 cm-1. Theoretical studies on simplified model complexes of 1 reveal that calculated values of the…
Effect of Protonated Organic Cations and Anion−π Interactions on the Magnetic Behavior of Hexabromorhenate(IV) Salts
Two novel Re-IV compounds of formula (Hbpym)(2)[(ReBr6)-Br-IV]center dot 4H(2)O (1) and (H(4)biim)[(ReBr6)-Br-IV]center dot 4H(2)O (2) [Hbpym(+) = 2,2'-bipyrimidinium cation and H(4)biim(2+) = 2,2'-biimidazolium dication] have been prepared and magnetostructurally characterized. 1 and 2 exhibit distinct crystal packing, and the presence of weak intermolecular contacts, such as Re-Br...B-rRe (1 and 2), Re-Br center dot center dot center dot(H2O)center dot center dot center dot BrRe (1 and 2), and Re-Br center dot center dot center dot pi center dot center dot center dot Br-Re (2), lead to different magnetic behaviors. While 1 is antiferromagnetic, 2 is a ferromagnetic compound and indeed the…
CoIILnIII dinuclear complexes (LnIII = Gd, Tb, Dy, Ho and Er) as platforms for 1,5-dicyanamide-bridged tetranuclear CoII2LnIII2 complexes: A magneto-structural and theoretical study
Five acetate-diphenoxo triply-bridged Co-II-Ln(III) complexes (Ln(I) = Gd, Tb, Dy, Ho, Er) of formula [Co(mu-L)(mu-Ac)Ln(NO3)(2)] and two diphenoxo doubly-bridged Co-II-Ln(III) complexes (Ln(III) = Gd, Tb) of formula [Co(H2O)(mu-L)Ln(NO3)(3)]center dot S (S = H2O or MeOH), were prepared in one pot reaction from the compartmental ligand N,N',N ''-trimethyl-N,N ''-bis(2-hydroxy3-methoxy-5-methylbenzyl)diethylene triamine (H2L). The diphenoxo doubly-bridged Co-II-Ln(III) complexes were used as platforms to obtain 1,5-dicyanamide-bridged tetranuclear Co-II-Ln(III) complexes (Ln(III) = Gd, Tb, Dy, Ho, Er). All exhibit ferromagnetic interactions between the Co-II and Ln(III) ions and in the case …
Magneto-structural correlations in dirhenium(iv) complexes possessing magnetic pathways with even or odd numbers of atoms
The employment of pyrazine (pyz), pyrimidine (pym) and s-triazine (triz) ligands in ReIV chemistry leads to the isolation of a family of complexes of general formula (NBu4)2[(ReX5)2(μ-L)] (L = pyz, X = Cl (1) or Br (2); L = pym, X = Br (3); L = triz, X = Br (4)). 1-4 are dinuclear compounds where two pentahalorhenium(iv) fragments are connected by bidentate pyz, pym and triz ligands. Variable-temperature magnetic measurements, in combination with detailed theoretical studies, uncover the underlying magneto-structural correlation whereby the nature of the exchange between the metal ions is dictated by the number of intervening atoms. That is, the spin-polarization mechanism present dictates …
Accidentally on purpose: construction of a ferromagnetic, oxime-based [MnIII2] dimer
The serendipitous self-assembly of the complex [Mn(III)(2)Zn(II)(2)(Ph-sao)(2)(Ph-saoH)(4)(hmp)(2)] (1),whose magnetic core consists solely of two symmetry equivalent Mn(iii) ions linked by two symmetry equivalent -N-O- moieties, provides a relatively simple model complex with which to study the magneto-structural relationship in oxime-bridged Mn(III) cluster compounds. Dc magnetic susceptibility measurements reveal ferromagnetic (J = +2.2 cm(-1)) exchange resulting in an S = 4 ground state. Magnetisation measurements performed at low temperatures and high fields reveal the presence of significant anisotropy, with ac measurements confirming slow relaxation of the magnetisation and Single-Mo…
Self-Assembly of the Hexabromorhenate(IV) Anion with Protonated Benzotriazoles: X-ray Structure and Magnetic Properties
Two novel ReIV compounds of formulas [HBTA]2[ReIVBr6] (1) and [HMEBTA]2[ReIVBr6] (2) [BTA = 1H-benzotriazole and MEBTA = 1-(methoxymethyl)-1H-benzotriazole] have been synthesized and magneto-structurally characterized. 1 and 2 crystallize in the triclinic system with space group P1̅. In both compounds, the rhenium ion is six-coordinate, bonded to six bromo ligands in a regular octahedral geometry. Short ReIV–Br···Br–ReIV contacts, π–π stacking, and H-bonding interactions occur in the crystal lattice of both 1 and 2, generating novel supramolecular structures based on the ReIV. The different dispositions of the cations and the intermolecular Br···Br contacts in 1 and 2 play an important stru…
Self-assembly of the tetrachlorido(oxalato)rhenate( iv ) anion with protonated organic cations: X-ray structures and magnetic properties
Two novel ReIV compounds of formulae [H2bpy][ReIVCl4(ox)] (1) and [H3biim]2[ReIVCl4(ox)] (2) [H2bpy2+ = 4,4′-bipyridinium dication, H3biim+ = 2,2′-biimidazolium monocation, and ox2− = oxalate dianion] have been synthesised and magneto-structurally characterised. 1 crystallises in the monoclinic system with space group C2/c, and 2 crystallises in the triclinic system with space group P[1 with combining macron]. The ReIV ion in 1 and 2 is six-coordinate, bonded to four chloride ions and two oxalate-oxygen atoms in a distorted octahedral geometry. Short intermolecular ReIV–Cl⋯Cl–ReIV contacts, Cl⋯π type interactions and hydrogen bonds are present in the crystal lattice of both compounds, gener…
Metamagnetic behaviour in a new Cu(ii)Re(iv) chain based on the hexachlororhenate(iv) anion
A new chloro-bridged heterobimetallic Cu(ii)Re(iv) chain of formula {Cu(pyim)(Him)2ReCl6}n·MeCN (·MeCN) has been prepared and magnetostructurally characterised. Compound is the first example of the [Re(IV)Cl6](2-) anion acting as a metalloligand towards a paramagnetic metal ion.
Slow Magnetic Relaxation in a Co (II)–Y (III) Single‐Ion Magnet with Positive Axial Zero‐Field Splitting
This work was supported by the MINECO (Spain) (Project CTQ2011-24478), the Junta de Andalucía (FQM-195 and Project of excellence P08-FQM-03705), and the University of Granada. E.R. and E.Cr. thank MINECO grant No. CTQ2011-23862-C02-01 and Generalitat de Catalunya grant No. 2009SGR-1459, for financial support. We would like to thank Prof. Liviu Chibotaru for providing us the SINGLE_ANISO program and Dr. Andrew Ozarowski for the EPR simulation software. E.K.B. thanks the EPSRC and Leverhulme Trust for financial support. The NHMFL is funded by the NSF, DoE, and the state of Florida. J.C. acknowledges financial support by the Spanish Ministerio de Ciencia e Innovación through projects CTQ2010-1…
Pressure induced enhancement of the magnetic ordering temperature in rhenium(IV) monomers
Materials that demonstrate long-range magnetic order are synonymous with information storage and the electronics industry, with the phenomenon commonly associated with metals, metal alloys or metal oxides and sulfides. A lesser known family of magnetically ordered complexes are the monometallic compounds of highly anisotropic d-block transition metals; the ‘transformation' from isolated zero-dimensional molecule to ordered, spin-canted, three-dimensional lattice being the result of through-space interactions arising from the combination of large magnetic anisotropy and spin-delocalization from metal to ligand which induces important intermolecular contacts. Here we report the effect of pres…
CCDC 1029762: Experimental Crystal Structure Determination
Related Article: José Martínez-Lillo, Joan Cano, Wolfgang Wernsdorfer, Euan K. Brechin|2015|Chem.-Eur.J.|21|8790|doi:10.1002/chem.201500439
CCDC 966620: Experimental Crystal Structure Determination
Related Article: Christopher H. Woodall, Alessandro Prescimone, Martin Misek, Joan Cano, Juan Faus, Micheal Probert, Mark Murrie, Simon Parsons, Stephen Moggach, Jose Martinez-Lillo, Konstantin Kamenev, Euan K. Brechin|2016|Nat.Commun.|7|13870|doi:10.1038/ncomms13870
CCDC 1453404: Experimental Crystal Structure Determination
Related Article: Christopher H. Woodall, Alessandro Prescimone, Martin Misek, Joan Cano, Juan Faus, Micheal Probert, Mark Murrie, Simon Parsons, Stephen Moggach, Jose Martinez-Lillo, Konstantin Kamenev, Euan K. Brechin|2016|Nat.Commun.|7|13870|doi:10.1038/ncomms13870
CCDC 1048365: Experimental Crystal Structure Determination
Related Article: José Martínez-Lillo , Anders H. Pedersen , Juan Faus , Miguel Julve , and Euan K. Brechin|2015|Cryst.Growth Des.|15|2598|doi:10.1021/acs.cgd.5b00436
CCDC 1453400: Experimental Crystal Structure Determination
Related Article: Christopher H. Woodall, Alessandro Prescimone, Martin Misek, Joan Cano, Juan Faus, Micheal Probert, Mark Murrie, Simon Parsons, Stephen Moggach, Jose Martinez-Lillo, Konstantin Kamenev, Euan K. Brechin|2016|Nat.Commun.|7|13870|doi:10.1038/ncomms13870
CCDC 1048366: Experimental Crystal Structure Determination
Related Article: José Martínez-Lillo , Anders H. Pedersen , Juan Faus , Miguel Julve , and Euan K. Brechin|2015|Cryst.Growth Des.|15|2598|doi:10.1021/acs.cgd.5b00436
CCDC 1557653: Experimental Crystal Structure Determination
Related Article: Anders H. Pedersen, Miguel Julve, José Martínez-Lillo, Joan Cano, Euan K. Brechin|2017|Dalton Trans.|46|11890|doi:10.1039/C7DT02612A
CCDC 1453401: Experimental Crystal Structure Determination
Related Article: Christopher H. Woodall, Alessandro Prescimone, Martin Misek, Joan Cano, Juan Faus, Micheal Probert, Mark Murrie, Simon Parsons, Stephen Moggach, Jose Martinez-Lillo, Konstantin Kamenev, Euan K. Brechin|2016|Nat.Commun.|7|13870|doi:10.1038/ncomms13870
CCDC 1534670: Experimental Crystal Structure Determination
Related Article: Anders H. Pedersen, Blaise L. Geoghegan, Gary S. Nichol, David W. Lupton, Keith. S. Murray, José Martínez-Lillo, Ian A. Gass, Euan K. Brechin|2017|Dalton Trans.|46|5250|doi:10.1039/C7DT00752C
CCDC 1550275: Experimental Crystal Structure Determination
Related Article: Anders H. Pedersen, Miguel Julve, José Martínez-Lillo, Joan Cano, Euan K. Brechin|2017|Dalton Trans.|46|16025|doi:10.1039/C7DT02216F
CCDC 1550272: Experimental Crystal Structure Determination
Related Article: Anders H. Pedersen, Miguel Julve, José Martínez-Lillo, Joan Cano, Euan K. Brechin|2017|Dalton Trans.|46|16025|doi:10.1039/C7DT02216F
CCDC 1550271: Experimental Crystal Structure Determination
Related Article: Anders H. Pedersen, Miguel Julve, José Martínez-Lillo, Joan Cano, Euan K. Brechin|2017|Dalton Trans.|46|16025|doi:10.1039/C7DT02216F
CCDC 1534665: Experimental Crystal Structure Determination
Related Article: Anders H. Pedersen, Blaise L. Geoghegan, Gary S. Nichol, David W. Lupton, Keith. S. Murray, José Martínez-Lillo, Ian A. Gass, Euan K. Brechin|2017|Dalton Trans.|46|5250|doi:10.1039/C7DT00752C
CCDC 1503662: Experimental Crystal Structure Determination
Related Article: Anders H. Pedersen, Miguel Julve, Euan K. Brechin, José Martínez-Lillo|2017|CrystEngComm|19|503|doi:10.1039/C6CE02025A
CCDC 1054691: Experimental Crystal Structure Determination
Related Article: José Martínez-Lillo, Miguel Julve, Euan K. Brechin|2015|Polyhedron|98|35|doi:10.1016/j.poly.2015.05.036
CCDC 968170: Experimental Crystal Structure Determination
Related Article: Silvia Titos-Padilla, José Ruiz, Juan Manuel Herrera, Euan K. Brechin, Wolfgang Wersndorfer, Francesc Lloret, and Enrique Colacio|2013|Inorg.Chem.|52|9620|doi:10.1021/ic401378k
CCDC 1534671: Experimental Crystal Structure Determination
Related Article: Anders H. Pedersen, Blaise L. Geoghegan, Gary S. Nichol, David W. Lupton, Keith. S. Murray, José Martínez-Lillo, Ian A. Gass, Euan K. Brechin|2017|Dalton Trans.|46|5250|doi:10.1039/C7DT00752C
CCDC 1453403: Experimental Crystal Structure Determination
Related Article: Christopher H. Woodall, Alessandro Prescimone, Martin Misek, Joan Cano, Juan Faus, Micheal Probert, Mark Murrie, Simon Parsons, Stephen Moggach, Jose Martinez-Lillo, Konstantin Kamenev, Euan K. Brechin|2016|Nat.Commun.|7|13870|doi:10.1038/ncomms13870
CCDC 966624: Experimental Crystal Structure Determination
Related Article: Christopher H. Woodall, Alessandro Prescimone, Martin Misek, Joan Cano, Juan Faus, Micheal Probert, Mark Murrie, Simon Parsons, Stephen Moggach, Jose Martinez-Lillo, Konstantin Kamenev, Euan K. Brechin|2016|Nat.Commun.|7|13870|doi:10.1038/ncomms13870
CCDC 1534674: Experimental Crystal Structure Determination
Related Article: Anders H. Pedersen, Blaise L. Geoghegan, Gary S. Nichol, David W. Lupton, Keith. S. Murray, José Martínez-Lillo, Ian A. Gass, Euan K. Brechin|2017|Dalton Trans.|46|5250|doi:10.1039/C7DT00752C
CCDC 1453402: Experimental Crystal Structure Determination
Related Article: Christopher H. Woodall, Alessandro Prescimone, Martin Misek, Joan Cano, Juan Faus, Micheal Probert, Mark Murrie, Simon Parsons, Stephen Moggach, Jose Martinez-Lillo, Konstantin Kamenev, Euan K. Brechin|2016|Nat.Commun.|7|13870|doi:10.1038/ncomms13870
CCDC 1556333: Experimental Crystal Structure Determination
Related Article: Donatella Armentano, Miguel A. Barquero, Carlos Rojas-Dotti, Nicolas Moliner, Giovanni De Munno, Euan K. Brechin, and José Martínez-Lillo|2017|Cryst.Growth Des.|17|5342|doi:10.1021/acs.cgd.7b00841
CCDC 1534667: Experimental Crystal Structure Determination
Related Article: Anders H. Pedersen, Blaise L. Geoghegan, Gary S. Nichol, David W. Lupton, Keith. S. Murray, José Martínez-Lillo, Ian A. Gass, Euan K. Brechin|2017|Dalton Trans.|46|5250|doi:10.1039/C7DT00752C
CCDC 968171: Experimental Crystal Structure Determination
Related Article: Silvia Titos-Padilla, José Ruiz, Juan Manuel Herrera, Euan K. Brechin, Wolfgang Wersndorfer, Francesc Lloret, and Enrique Colacio|2013|Inorg.Chem.|52|9620|doi:10.1021/ic401378k
CCDC 1550274: Experimental Crystal Structure Determination
Related Article: Anders H. Pedersen, Miguel Julve, José Martínez-Lillo, Joan Cano, Euan K. Brechin|2017|Dalton Trans.|46|16025|doi:10.1039/C7DT02216F
CCDC 1534666: Experimental Crystal Structure Determination
Related Article: Anders H. Pedersen, Blaise L. Geoghegan, Gary S. Nichol, David W. Lupton, Keith. S. Murray, José Martínez-Lillo, Ian A. Gass, Euan K. Brechin|2017|Dalton Trans.|46|5250|doi:10.1039/C7DT00752C
CCDC 1453405: Experimental Crystal Structure Determination
Related Article: Christopher H. Woodall, Alessandro Prescimone, Martin Misek, Joan Cano, Juan Faus, Micheal Probert, Mark Murrie, Simon Parsons, Stephen Moggach, Jose Martinez-Lillo, Konstantin Kamenev, Euan K. Brechin|2016|Nat.Commun.|7|13870|doi:10.1038/ncomms13870
CCDC 1453399: Experimental Crystal Structure Determination
Related Article: Christopher H. Woodall, Alessandro Prescimone, Martin Misek, Joan Cano, Juan Faus, Micheal Probert, Mark Murrie, Simon Parsons, Stephen Moggach, Jose Martinez-Lillo, Konstantin Kamenev, Euan K. Brechin|2016|Nat.Commun.|7|13870|doi:10.1038/ncomms13870
CCDC 1534669: Experimental Crystal Structure Determination
Related Article: Anders H. Pedersen, Blaise L. Geoghegan, Gary S. Nichol, David W. Lupton, Keith. S. Murray, José Martínez-Lillo, Ian A. Gass, Euan K. Brechin|2017|Dalton Trans.|46|5250|doi:10.1039/C7DT00752C
CCDC 1534675: Experimental Crystal Structure Determination
Related Article: Anders H. Pedersen, Blaise L. Geoghegan, Gary S. Nichol, David W. Lupton, Keith. S. Murray, José Martínez-Lillo, Ian A. Gass, Euan K. Brechin|2017|Dalton Trans.|46|5250|doi:10.1039/C7DT00752C
CCDC 1029763: Experimental Crystal Structure Determination
Related Article: José Martínez-Lillo, Joan Cano, Wolfgang Wernsdorfer, Euan K. Brechin|2015|Chem.-Eur.J.|21|8790|doi:10.1002/chem.201500439
CCDC 1453406: Experimental Crystal Structure Determination
Related Article: Christopher H. Woodall, Alessandro Prescimone, Martin Misek, Joan Cano, Juan Faus, Micheal Probert, Mark Murrie, Simon Parsons, Stephen Moggach, Jose Martinez-Lillo, Konstantin Kamenev, Euan K. Brechin|2016|Nat.Commun.|7|13870|doi:10.1038/ncomms13870
CCDC 1556332: Experimental Crystal Structure Determination
Related Article: Donatella Armentano, Miguel A. Barquero, Carlos Rojas-Dotti, Nicolas Moliner, Giovanni De Munno, Euan K. Brechin, and José Martínez-Lillo|2017|Cryst.Growth Des.|17|5342|doi:10.1021/acs.cgd.7b00841
CCDC 986670: Experimental Crystal Structure Determination
Related Article: José Martínez-Lillo, John Kong, Wdeson P. Barros, Juan Faus, Miguel Julve, Euan K. Brechin|2014|Chem.Commun.|50|5840|doi:10.1039/C4CC01564A
CCDC 1503663: Experimental Crystal Structure Determination
Related Article: Anders H. Pedersen, Miguel Julve, Euan K. Brechin, José Martínez-Lillo|2017|CrystEngComm|19|503|doi:10.1039/C6CE02025A
CCDC 1833818: Experimental Crystal Structure Determination
Related Article: Eirini Fotopoulou, Jose Martínez-Lillo, Milosz Siczek, Tadeusz Lis, Vassilis Tangoulis, Marco Evangelisti, Euan K. Brechin, Constantinos J. Milios|2018|Chem.Commun.|54|6153|doi:10.1039/C8CC02583E
CCDC 1054690: Experimental Crystal Structure Determination
Related Article: José Martínez-Lillo, Miguel Julve, Euan K. Brechin|2015|Polyhedron|98|35|doi:10.1016/j.poly.2015.05.036
CCDC 1011545: Experimental Crystal Structure Determination
Related Article: José Martínez-Lillo, John Kong, Miguel Julve, Euan K. Brechin|2014|Cryst.Growth Des.|14|5985|doi:10.1021/cg5011693
CCDC 966623: Experimental Crystal Structure Determination
Related Article: Christopher H. Woodall, Alessandro Prescimone, Martin Misek, Joan Cano, Juan Faus, Micheal Probert, Mark Murrie, Simon Parsons, Stephen Moggach, Jose Martinez-Lillo, Konstantin Kamenev, Euan K. Brechin|2016|Nat.Commun.|7|13870|doi:10.1038/ncomms13870
CCDC 1534673: Experimental Crystal Structure Determination
Related Article: Anders H. Pedersen, Blaise L. Geoghegan, Gary S. Nichol, David W. Lupton, Keith. S. Murray, José Martínez-Lillo, Ian A. Gass, Euan K. Brechin|2017|Dalton Trans.|46|5250|doi:10.1039/C7DT00752C
CCDC 1557652: Experimental Crystal Structure Determination
Related Article: Anders H. Pedersen, Miguel Julve, José Martínez-Lillo, Joan Cano, Euan K. Brechin|2017|Dalton Trans.|46|11890|doi:10.1039/C7DT02612A
CCDC 1550273: Experimental Crystal Structure Determination
Related Article: Anders H. Pedersen, Miguel Julve, José Martínez-Lillo, Joan Cano, Euan K. Brechin|2017|Dalton Trans.|46|16025|doi:10.1039/C7DT02216F
CCDC 1534672: Experimental Crystal Structure Determination
Related Article: Anders H. Pedersen, Blaise L. Geoghegan, Gary S. Nichol, David W. Lupton, Keith. S. Murray, José Martínez-Lillo, Ian A. Gass, Euan K. Brechin|2017|Dalton Trans.|46|5250|doi:10.1039/C7DT00752C
CCDC 1534668: Experimental Crystal Structure Determination
Related Article: Anders H. Pedersen, Blaise L. Geoghegan, Gary S. Nichol, David W. Lupton, Keith. S. Murray, José Martínez-Lillo, Ian A. Gass, Euan K. Brechin|2017|Dalton Trans.|46|5250|doi:10.1039/C7DT00752C
CCDC 966622: Experimental Crystal Structure Determination
Related Article: Christopher H. Woodall, Alessandro Prescimone, Martin Misek, Joan Cano, Juan Faus, Micheal Probert, Mark Murrie, Simon Parsons, Stephen Moggach, Jose Martinez-Lillo, Konstantin Kamenev, Euan K. Brechin|2016|Nat.Commun.|7|13870|doi:10.1038/ncomms13870
CCDC 966625: Experimental Crystal Structure Determination
Related Article: Christopher H. Woodall, Alessandro Prescimone, Martin Misek, Joan Cano, Juan Faus, Micheal Probert, Mark Murrie, Simon Parsons, Stephen Moggach, Jose Martinez-Lillo, Konstantin Kamenev, Euan K. Brechin|2016|Nat.Commun.|7|13870|doi:10.1038/ncomms13870
CCDC 1557650: Experimental Crystal Structure Determination
Related Article: Anders H. Pedersen, Miguel Julve, José Martínez-Lillo, Joan Cano, Euan K. Brechin|2017|Dalton Trans.|46|11890|doi:10.1039/C7DT02612A
CCDC 1557651: Experimental Crystal Structure Determination
Related Article: Anders H. Pedersen, Miguel Julve, José Martínez-Lillo, Joan Cano, Euan K. Brechin|2017|Dalton Trans.|46|11890|doi:10.1039/C7DT02612A
CCDC 1011546: Experimental Crystal Structure Determination
Related Article: José Martínez-Lillo, John Kong, Miguel Julve, Euan K. Brechin|2014|Cryst.Growth Des.|14|5985|doi:10.1021/cg5011693
CCDC 966619: Experimental Crystal Structure Determination
Related Article: Christopher H. Woodall, Alessandro Prescimone, Martin Misek, Joan Cano, Juan Faus, Micheal Probert, Mark Murrie, Simon Parsons, Stephen Moggach, Jose Martinez-Lillo, Konstantin Kamenev, Euan K. Brechin|2016|Nat.Commun.|7|13870|doi:10.1038/ncomms13870
CCDC 966621: Experimental Crystal Structure Determination
Related Article: Christopher H. Woodall, Alessandro Prescimone, Martin Misek, Joan Cano, Juan Faus, Micheal Probert, Mark Murrie, Simon Parsons, Stephen Moggach, Jose Martinez-Lillo, Konstantin Kamenev, Euan K. Brechin|2016|Nat.Commun.|7|13870|doi:10.1038/ncomms13870
CCDC 1491360: Experimental Crystal Structure Determination
Related Article: Christopher H. Woodall, Alessandro Prescimone, Martin Misek, Joan Cano, Juan Faus, Micheal Probert, Mark Murrie, Simon Parsons, Stephen Moggach, Jose Martinez-Lillo, Konstantin Kamenev, Euan K. Brechin|2016|Nat.Commun.|7|13870|doi:10.1038/ncomms13870
CCDC 1491361: Experimental Crystal Structure Determination
Related Article: Christopher H. Woodall, Alessandro Prescimone, Martin Misek, Joan Cano, Juan Faus, Micheal Probert, Mark Murrie, Simon Parsons, Stephen Moggach, Jose Martinez-Lillo, Konstantin Kamenev, Euan K. Brechin|2016|Nat.Commun.|7|13870|doi:10.1038/ncomms13870
CCDC 1550276: Experimental Crystal Structure Determination
Related Article: Anders H. Pedersen, Miguel Julve, José Martínez-Lillo, Joan Cano, Euan K. Brechin|2017|Dalton Trans.|46|16025|doi:10.1039/C7DT02216F