0000000001299422

AUTHOR

Haishuang Zhao

showing 21 related works from this author

Elucidating structural order and disorder phenomena in mullite-type Al4B2O9 by automated electron diffraction tomography

2017

The crystal structure and disorder phenomena of Al4B2O9, an aluminum borate from the mullite-type family, were studied using automated diffraction tomography (ADT), a recently established method for collection and analysis of electron diffraction data. Al4B2O9, prepared by sol-gel approach, crystallizes in the monoclinic space group C2/m. The ab initio structure determination based on three-dimensional electron diffraction data from single ordered crystals reveals that edge-connected AlO6 octahedra expanding along the b axis constitute the backbone. The ordered structure (A) was confirmed by TEM and HAADF-STEM images. Furthermore, disordered crystals with diffuse scattering along the b axis…

DiffractionReflection high-energy electron diffractionMaterials scienceGas electron diffraction02 engineering and technologyCrystal structure010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciences0104 chemical sciencesElectronic Optical and Magnetic MaterialsInorganic ChemistryDiffraction tomographyCrystallographyElectron diffractionMaterials ChemistryCeramics and CompositesPhysical and Theoretical Chemistry0210 nano-technologySuperstructure (condensed matter)Electron backscatter diffractionJournal of Solid State Chemistry
researchProduct

Expanding the Variety of Zirconium‐based Inorganic Building Units for Metal–Organic Frameworks

2019

Two new zirconium-based metal-organic frameworks with the composition [Zr6 O4 (OH)4 (OAc)6 (BDC)3 ] (CAU-26) and [Zr5 O4 (OH)4 (OAc)4 (BDC)2 ] (CAU-27) are reported, which were synthesized from acetic acid, a rarely utilized but green and sustainable solvent (BDC2- : 1,4-benzenedicarboxylate). Structure determination aided by automated electron diffraction tomography revealed that CAU-26 is composed of layers of well-known {Zr6 O8 } clusters interconnected by terephthalate ions. In contrast CAU-27 exhibits a three-dimensional structure with a so far unknown type of one-dimensional inorganic building unit (IBU), which can be rationalized as condensed polyhedron-sharing chains of {Zr6 O8 } cl…

Green chemistryMaterials scienceChemistry MultidisciplinaryCATALYZED BORYLATIONchemistry.chemical_element010402 general chemistryHIGHLY EFFICIENTBorylation01 natural sciencesTOXICITYCatalysisCatalysisAUTOMATED DIFFRACTION TOMOGRAPHYPolymer chemistryMoleculeZR-MOFGreen ChemistryZirconiumScience & TechnologySTABILITY010405 organic chemistryDirect C-H borylationGeneral ChemistryGeneral MedicineElectron DiffractionORGANOSILICA0104 chemical sciencesSolventChemistrychemistryPhysical SciencesARENESMetal-organic frameworkChemical stabilityZirconiumCLUSTERSMetal-organic FrameworksGREEN SYNTHESISAngewandte Chemie
researchProduct

The effect of trivalent framework heteroatoms in Cu-CHA on the Selective Catalytic Reduction of NO

2021

Abstract The effect of the trivalent framework atoms (Si4+/M3+ = 13-105) in Cu exchanged CHA-type zeolites was investigated for the selective catalytic reduction of NO with NH3. While the increased hydrophobicity of B-CHA compared to Al-CHA could make it a good candidate for low temperature SCR, the material was too unstable under reaction conditions and the exchanged Cu2+ did not remain isolated. Consequently a lower activity and selectivity than for Al-CHA were observed. Ga-CHA on the other hand showed a similar Cu2+ speciation as Al-CHA at similar Si4+/M3+ ratios. The difference in catalytic activity was remarkably small. While Ga-CHA was less stable upon hydrothermal aging, this was mar…

Reaction conditionsChemistryProcess Chemistry and Technologymedia_common.quotation_subjectHeteroatomInorganic chemistrySelective catalytic reductionCatalysisHydrothermal circulationCatalysisSpeciationSelectivityZeolitemedia_commonApplied Catalysis A: General
researchProduct

A new microporous 12-ring zincosilicate THK-2 with many terminal silanols characterized by automated electron diffraction tomography.

2020

A newly synthesized microporous zincosilicate THK-2 (estimated structural composition: |(H2O)6.7(C6H13N)0.9|[Li0.5Zn3.1Si32O62.7(OH)9.3]) was characterized by single-crystal electron diffraction using the automated electron diffraction tomography (ADT) approach in combination with powder X-ray diffraction. The lattice constants and space group of as-synthesized THK-2 were a = 2.50377(7) nm, b = 1.43866(4) nm, c = 0.505369(8) nm, and Pccn (no. 56) with orthorhombic symmetry. Because the crystal lattice was almost identical to a hexagonal lattice (), the first several peaks in its powder X-ray diffraction data severely overlapped, which suppressed the structural information to decide the fram…

Inorganic ChemistryDiffractionCrystallographyLattice constantMaterials scienceElectron diffractionSpecific surface areaMoleculeHexagonal latticeCrystal structureMicroporous materialDalton transactions (Cambridge, England : 2003)
researchProduct

An average structure model of the intermediate phase between sodalite and cancrinite

2018

Abstract Powder samples of the intermediate phase between sodalite and cancrinite (INT) have been synthesized hydrothermally. The formation of the INT phase was proved by both PXRD and TGA analysis and its stoichiometric composition was found to be |Na6.95(1)(CO3)0.48(2) (H2O)6.18(6)|[AlSiO4]6. The comparison of the intensity ratios of PXRD data with a SCXRD measurement indicates the formation of a comparable phase with the typical strong stacking disorder. The hexagonal lattice parameters with a=1266.3(2) pm and c=1586(1) pm and the unit cell setting were determined by Pawley fits. The average lattice and the stacking disorder along c axis could be confirmed by the reconstruction of three-…

Materials science02 engineering and technology010502 geochemistry & geophysics021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesCancriniteInorganic ChemistryCrystallographychemistry.chemical_compoundchemistryPhase (matter)SodaliteGeneral Materials ScienceStructured model0210 nano-technology0105 earth and related environmental sciencesZeitschrift für Kristallographie - Crystalline Materials
researchProduct

Crystal chemical characterization of mullite-type aluminum borate compounds

2017

Abstract Al-rich aluminum borates were prepared by different synthesis routes using various Al/B ratios, characterized by diffraction methods, spectroscopy and prompt gamma activation analysis. The 11B NMR data show a small amount of BO4 species in all samples. The chemical analysis indicates a trend in the Al/B ratio instead of a fixed composition. Both methods indicate a solid solution Al5−xB1+xO9 where Al is substituted by B in the range of 1–3%. The structure of B-rich Al4B2O9 (C2/m, a=1488 pm, b=553 pm, c=1502 pm, s=90.6°), was re-investigated by electron diffraction methods, showing that structural details vary within a crystallite. In most of the domains the atoms are orderly distrib…

Materials science02 engineering and technologyNuclear magnetic resonance spectroscopy010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciences0104 chemical sciencesElectronic Optical and Magnetic MaterialsInorganic ChemistryCrystalCrystallographyElectron diffractionX-ray crystallographyMaterials ChemistryCeramics and CompositesDensity functional theoryCrystallitePhysical and Theoretical Chemistry0210 nano-technologySpectroscopySolid solutionJournal of Solid State Chemistry
researchProduct

A consistent path for phase determination based on transmission electron microscopy techniques and supporting simulations.

2018

This work addresses aspects for the analysis of industrial relevant materials via transmission electron microscopy (TEM). The complex phase chemistry and structural diversity of these materials require several characterization techniques to be employed simultaneously; unfortunately, different characterization techniques often lack connection to yield a complete and consistent picture. This paper describes a continuous path, starting with the acquisition of 3D diffraction data - alongside classical high-resolution imaging techniques - and linking the structural characterization of hard metal industrial samples with energy-loss fine-structure simulations, quantitative electron energy-loss (EE…

010302 applied physicsDiffractionOffset (computer science)Hard metalGeneral Physics and AstronomyStructural diversity02 engineering and technologyCell BiologyElectron021001 nanoscience & nanotechnology01 natural sciencesHard metalsStructural BiologyTransmission electron microscopy0103 physical sciencesGeneral Materials Science0210 nano-technologySpectroscopyBiological systemMicron (Oxford, England : 1993)
researchProduct

Highly stable and porous porphyrin-based zirconium and hafnium phosphonates – electron crystallography as an important tool for structure elucidation

2018

The Ni-metallated porphyrin-based tetraphosphonic acid (Ni-tetra(4-phosphonophenyl)porphyrin, Ni-H8TPPP) was used for the synthesis of highly porous metal phosphonates containing the tetravalent cations Zr4+ and Hf4+. The compounds were thoroughly characterized regarding their sorption properties towards N2 and H2O as well as thermal and chemical stability. During the synthesis optimization the reaction time could be substantially decreased under stirring from 24 to 3 h in glass vials. M-CAU-30, [M2(Ni-H2TPPP)(OH/F)2]·H2O (M = Zr, Hf) shows exceptionally high specific surface areas for metal phosphonates of aBET = 1070 and 1030 m2 g-1 for Zr- and Hf-CAU-30, respectively, which are very clos…

PORESMaterials scienceChemistry Multidisciplinarychemistry.chemical_element02 engineering and technologyCrystal structure010402 general chemistry01 natural sciencesAQUEOUS-SOLUTIONMETAL-ORGANIC FRAMEWORKSchemistry.chemical_compoundDESIGNAUTOMATED DIFFRACTION TOMOGRAPHYFormula unitMoleculeCRYSTAL-STRUCTUREZirconiumScience & TechnologySTABILITYGeneral Chemistry021001 nanoscience & nanotechnologyPorphyrin0104 chemical sciencesChemistryMANGANESE PORPHYRINSCrystallographychemistryElectron diffractionPhysical SciencesLIGANDSChemical stabilityCyclic voltammetry0210 nano-technologySYSTEMChemical Science
researchProduct

Solving Challenging Crystallographic Problems with Automated Electron Diffraction Tomography (ADT)

2016

Materials scienceNuclear magnetic resonanceElectron diffraction02 engineering and technologyTomography010502 geochemistry & geophysics021001 nanoscience & nanotechnology0210 nano-technology01 natural sciencesInstrumentation0105 earth and related environmental sciencesMicroscopy and Microanalysis
researchProduct

Electron diffraction tomography and X-ray powder diffraction on photoredox catalyst PDI

2019

N,N-Bis(2,6-diisopropylphenyl)-perylene-3,4,9,10-bis(dicarboximide) (PDI-iPr) is starting to be widely used as a metal-free homogeneous photoredox catalyst. The crystal structure was determined by a combination of electron diffraction tomography and X-ray powder diffraction and further validated by DFT-D calculations. Surprisingly, the molecular geometry of PDI-iPr leads to voids in the packing.

Materials scienceX-ray02 engineering and technologyGeneral ChemistryCrystal structure010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciences0104 chemical sciencesCatalysisCrystallographyMolecular geometryElectron diffractionHomogeneousGeneral Materials ScienceTomography0210 nano-technologyPowder diffractionCrystEngComm
researchProduct

Crystal Structures and Polymorphism of Nickel and Copper Coordination Polymers with Pyridine Ligands

2014

The crystal structures of a series of pyridine coordination polymers [MIICl2(C5H5N)x]n (M = Ni, Cu), prepared via thermal decomposition are reported. [NiCl2(C5H5N)4] (1) decomposes stepwise via [NiCl2(C5H5N)2]n (2), [NiCl2(C5H5N)]n (3), and [NiCl2(C5H5N)2/3]n (4), to NiCl2 with increasing temperature. The thermal decomposition of [CuCl2(C5H5N)2]n (5), progresses via two polymorphs of [CuCl2(C5H5N)]n (6a and 6b), and [CuCl2(C5H5N)2/3]n (7), to CuCl2. The compounds 3, 4, and 7 were prepared as pure phases. All crystal structures were determined by X-ray powder diffraction. Notably, the crystal structures of the polymorphs 6a and 6b were determined from powder diffraction data of a mixture of …

Inorganic Chemistrychemistry.chemical_compoundNickelCrystallographychemistryOctahedronPolymorphism (materials science)PyridineThermal decompositionchemistry.chemical_elementCrystal structureCopperPowder diffractionZeitschrift für anorganische und allgemeine Chemie
researchProduct

Highly stable and porous porphyrin-based zirconium and hafnium phosphonates – electron crystallography as an important tool for structure elucidation…

2018

A highly porous and stable Zr-MOF containing a planar porphyrin-based tetraphosphonic acid was synthesized and characterized regarding its sorption properties and chemical stability.

ChemistryChemical Science
researchProduct

CCDC 1880628: Experimental Crystal Structure Determination

2019

Related Article: Sebastian Leubner, Haishuang Zhao, Niels Van Velthoven, Mickael Henrion, Helge Reinsch, Dirk De Vos, Ute Kolb, Norbert Stock|2019|Angew.Chem.,Int.Ed.|58|10995|doi:10.1002/anie.201905456

Space GroupCrystallographyCrystal Systemcatena-[bis(mu-benzene-14-dicarboxylato)-tetrakis(mu-oxido)-tetrakis(mu-hydroxo)-tetrakis(mu-acetato)-penta-zirconium(iv) hydrate]Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1503642: Experimental Crystal Structure Determination

2016

Related Article: Yaşar Krysiak, Lothar Fink, Thomas Bernert, Jürgen Glinnemann, Martin Kapuscinski, Haishuang Zhao, Edith Alig, Martin U. Schmidt|2014|Z.Anorg.Allg.Chem.|640|3190|doi:10.1002/zaac.201400505

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(bis(mu-chloro)-pyridine-copper(ii))Experimental 3D Coordinates
researchProduct

CCDC 1503641: Experimental Crystal Structure Determination

2016

Related Article: Yaşar Krysiak, Lothar Fink, Thomas Bernert, Jürgen Glinnemann, Martin Kapuscinski, Haishuang Zhao, Edith Alig, Martin U. Schmidt|2014|Z.Anorg.Allg.Chem.|640|3190|doi:10.1002/zaac.201400505

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(bis(mu-chloro)-pyridine-copper(ii))Experimental 3D Coordinates
researchProduct

CCDC 1857633: Experimental Crystal Structure Determination

2019

Related Article: Alexander Bodach, Haishuang Zhao, Nai Liu, Edith Alig, Georg Manolikakes, Ute Kolb, Lothar Fink|2019|CrystEngComm|21|2571|doi:10.1039/C8CE02026D

Space GroupCrystallography29-bis[26-bis(propan-2-yl)phenyl]isoquinolino[4'5'6':6510]anthra[219-def]isoquinoline-13810(2H9H)-tetrone unknown solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1503643: Experimental Crystal Structure Determination

2016

Related Article: Yaşar Krysiak, Lothar Fink, Thomas Bernert, Jürgen Glinnemann, Martin Kapuscinski, Haishuang Zhao, Edith Alig, Martin U. Schmidt|2014|Z.Anorg.Allg.Chem.|640|3190|doi:10.1002/zaac.201400505

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(hexakis(mu-chloro)-bis(pyridine)-tri-copper)Experimental 3D Coordinates
researchProduct

CCDC 1503639: Experimental Crystal Structure Determination

2016

Related Article: Yaşar Krysiak, Lothar Fink, Thomas Bernert, Jürgen Glinnemann, Martin Kapuscinski, Haishuang Zhao, Edith Alig, Martin U. Schmidt|2014|Z.Anorg.Allg.Chem.|640|3190|doi:10.1002/zaac.201400505

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(bis(mu-chloro)-pyridine-nickel)Experimental 3D Coordinates
researchProduct

CCDC 1880629: Experimental Crystal Structure Determination

2019

Related Article: Sebastian Leubner, Haishuang Zhao, Niels Van Velthoven, Mickael Henrion, Helge Reinsch, Dirk De Vos, Ute Kolb, Norbert Stock|2019|Angew.Chem.,Int.Ed.|58|10995|doi:10.1002/anie.201905456

Space GroupCrystallographyCrystal Systemcatena-[bis(mu-[11'-biphenyl]-44'-dicarboxylato)-tetrakis(mu-hydroxo)-tetrakis(mu-oxido)-tetrakis(mu-acetato)-penta-zirconium(iv) hydrate]Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1831844: Experimental Crystal Structure Determination

2018

Related Article: Timo Rhauderwiek, Haishuang Zhao, Patrick Hirschle, Markus Döblinger, Bart Bueken, Helge Reinsch, Dirk De Vos, Stefan Wuttke, Ute Kolb, Norbert Stock|2018|Chemical Science|9|5467|doi:10.1039/C8SC01533C

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinatescatena-[(mu-[{1020-bis[4-(hydroxyphosphinato)phenyl]porphyrinato-515-diyl}di(41-phenylene)]bis(phosphonato))-bis(mu-hydroxo)-nickel-di-zirconium octahydrate]
researchProduct

CCDC 1503640: Experimental Crystal Structure Determination

2016

Related Article: Yaşar Krysiak, Lothar Fink, Thomas Bernert, Jürgen Glinnemann, Martin Kapuscinski, Haishuang Zhao, Edith Alig, Martin U. Schmidt|2014|Z.Anorg.Allg.Chem.|640|3190|doi:10.1002/zaac.201400505

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(hexakis(mu-chloro)-bis(pyridine)-tri-nickel)Experimental 3D Coordinates
researchProduct