0000000001299487

AUTHOR

Mohammad Khaja Nazeeruddin

showing 41 related works from this author

Perovskite solar cells employing organic charge-transport layers

2013

Thin-film photovoltaics play an important role in the quest for clean renewable energy. Recently, methylammonium lead halide perovskites were identified as promising absorbers for solar cells(1). In the three years since, the performance of perovskite-based solar cells has improved rapidly to reach efficiencies as high as 15%(1-10). To date, all high-efficiency perovskite solar cells reported make use of a (mesoscopic) metal oxide, such as Al2O3, TiO2, or ZrO2, which requires a high-temperature sintering process. Here, we show that methylammonium lead iodide perovskite layers, when sandwiched between two thin organic charge-transporting layers, also lead to solar cells with high power-conve…

chemistry.chemical_classificationMaterials scienceChemical engineeringchemistryIodidetechnology industry and agricultureSublimation (phase transition)Hybrid solar cellQuantum dot solar cell7. Clean energyAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsNature Photonics
researchProduct

Host–guest blue light-emitting electrochemical cells

2014

Carbazole, a commonly used hole-transporter for organic electronics, has been modified with an imidazolium cation and a hexafluorophosphate counter-anion to give an ionic hole-transporter. It has been applied as one of the hosts in a host–guest blue light-emitting electrochemical cell (LEC) with the neutral blue emitter FIrPic. We have obtained efficient and bright blue LECs with an electroluminescence maximum at 474 nm and efficacy of 5 cd A−1 at a luminance of 420 cd m−2, thereby demonstrating the potential of the ionic organic charge-transporters and of the host–guest architecture for LECs.

Organic electronicsMaterials scienceCarbazoleInorganic chemistryIonic bondingGeneral ChemistryElectroluminescenceElectrochemical cellchemistry.chemical_compoundchemistryHexafluorophosphateMaterials ChemistryCommon emitterBlue lightJ. Mater. Chem. C
researchProduct

Ultrafast Relaxation Dynamics of Osmium−Polypyridine Complexes in Solution

2013

We present steady-state absorption and emission spectroscopy and femtosecond broadband photoluminescence up-conversion spectroscopy studies of the electronic relaxation of Os(dmbp)(3) (Os1) and Os(bpy)(2)(dpp) (Os2) in ethanol, where dmbp is 4,4'-dimethyl-2,2'-biypridine, bpy is 2,2'-biypridine, and dpp is 2,3-dipyridyl pyrazine. In both cases, the steady-state phosphorescence is due to the lowest (MLCT)-M-3 state, whose quantum yield we estimate to be <= 5.0 x 10(-3). For Os1, the steady-state phosphorescence lifetime is 25 ns. In both complexes, the photoluminescence excitation spectra map the absorption spectrum, pointing to an excitation wavelength-independent quantum yield. The ultrafa…

PhotoluminescenceAbsorption spectroscopyChemistryQuantum yieldPhotochemistrySurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsGeneral EnergyIntersystem crossingPhotoluminescence excitationSinglet statePhysical and Theoretical ChemistryTriplet statePhosphorescenceultrafast metal complex fluorescence upconversion osmium
researchProduct

Tetrasubstituted Thieno[3,2- b]thiophenes as Hole-Transporting Materials for Perovskite Solar Cells

2019

Three hole-transporting materials (HTMs) were prepared following a straightforward synthetic route by cross-linking arylamine-based ligands with a simple thieno[3,2-b]thiophene (TbT) core. The novel HTMs were fully characterized with standard techniques to gain insight into their optical and electrochemical properties and were incorporated in solution-processed mesoporous (FAPbI3)0.85(MAPbBr3)0.15 perovskite-based solar cells. The similar molecular structure of the synthesized HTMs was leveraged to investigate the role that the bridging units between the conjugated TbT core and the peripheral arylamine units plays on their properties and thereby on the photovoltaic response. A remarkable po…

010405 organic chemistryChemistryOrganic ChemistryPhotovoltaic systemEnergy conversion efficiencyConjugated system010402 general chemistryElectrochemistry7. Clean energy01 natural sciencesCombinatorial chemistry0104 chemical scienceschemistry.chemical_compoundThiopheneMoleculeMesoporous material
researchProduct

Isomerism effect on the photovoltaic properties of benzotrithiophene-based hole-transporting materials

2017

Engineering of inorganic–organic lead halide perovskites for photovoltaic applications has experienced significant advances in recent years. However, the use of the relatively expensive spiro-OMeTAD as a hole-transporting material (HTM) poses a challenge due to dopant-induced degradation. Herein we introduce two new three-armed and four-armed HTMs (BTT-4 and BTT-5) based on isomeric forms of benzotrithiophene (BTT). The isomerism impact on the optical, electrochemical and photophysical properties and the photovoltaic performance is systematically investigated. Perovskite solar cells (PSCs) using BTT-4 and BTT-5 as HTMs show remarkable light-to-energy conversion efficiencies of 19.0% and 18.…

Materials scienceRenewable Energy Sustainability and the EnvironmentPhotovoltaic systemGeneral Materials ScienceNanotechnology02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology0210 nano-technology01 natural sciences0104 chemical sciencesPerovskite (structure)
researchProduct

Dibenzoquinquethiophene- and Dibenzosexithiophene-Based Hole-Transporting Materials for Perovskite Solar Cells

2018

Fused oligothiophene-based π-conjugated organic derivatives have been widely used in electronic devices. In particular, two-dimensional (2D) heteroarenes offer the possibility of broadening the scope by extending the π-conjugated framework, which endows enhanced charge transport properties due to the potential intermolecular π–π stacking. Here, the synthesis and characterization of two new small-molecule hole-transporting materials (HTMs) for perovskite solar cells (PSCs) are reported. The newly custom-made compounds are based on dibenzoquinquethiophene (DBQT) and dibenzosexithiophene (DBST) cores, which are covalently linked to triphenylamine moieties to successfully afford the four-armed …

Materials scienceGeneral Chemical EngineeringIntermolecular forceStackingNanotechnology02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnologyTriphenylamine01 natural sciences0104 chemical sciencesCharacterization (materials science)chemistry.chemical_compoundchemistryCovalent bondMaterials Chemistry0210 nano-technologyPerovskite (structure)Chemistry of Materials
researchProduct

Solution processed organic light-emitting diodes using a triazatruxene crosslinkable hole transporting material.

2018

A cross-linkable triazatruxene that leads to insoluble films upon thermal annealing at temperatures compatible with flexible substrates is presented. The films were used as the hole transporting and electron blocking layer in partially solution processed phosphorescent organic light-emitting diodes, reaching power conversion efficiencies of 24 lm W−1, an almost 50% improvement compared to the same OLEDs without the cross-linkable hole transporting layer.

Materials sciencebusiness.industryGeneral Chemical Engineering02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesElectron blocking layerTriazatruxene0104 chemical sciencesSolution processedOLEDOptoelectronics0210 nano-technologyPhosphorescencebusinessLayer (electronics)DiodeRSC advances
researchProduct

Efficient orange light-emitting electrochemical cells

2012

We report the first bis-cyclometalated cationic iridium(III) complex with N-aryl-substituted 1H-imidazo [4,5-f][1,10]phenanthroline. The complex emits yellow-orange phosphorescence with a maximum at 583 nm, a quantum yield of 43%, and an excited-state lifetime of 910 ns in argon-saturated dichloromethane. Optimized orange light-emitting electrochemical cells with the new Ir(III) complex exhibit fast turn-on, a peak luminance of 684 cd m(-2) and a peak efficacy of 6.5 cd A(-1); in 850 h of continuous operation their luminance and efficacy decrease only by 20%.

PhenanthrolineCationic polymerizationchemistry.chemical_elementQuantum yieldGeneral ChemistryOrange (colour)PhotochemistryElectrochemical cellchemistry.chemical_compoundchemistryMaterials ChemistryIridiumPhosphorescenceDichloromethaneJournal of Materials Chemistry
researchProduct

Selenophene-Based Hole-Transporting Materials for Perovskite Solar Cells

2021

Two novel and simple donor-π-bridge-donor (D-π-D) hole-transporting materials (HTMs) containing two units of the p-methoxytriphenylamine (TPA) electron donor group covalently bridged by means of the 3,4-dimethoxyselenophene spacer through single and triple bonds are reported. The optoelectronic and thermal properties of the new selenium-containing HTMs have been determined using standard experimental techniques and theoretical density functional theory (DFT) calculations. The selenium-based HTMs have been incorporated in mesoporous perovskite solar cells (PSCs) in combination with the triple-cation perovskite [(FAPbI3 )0.87 (MAPbBr3 )0.13 ]0.92 [CsPbI3 ]0.08 . Limited values of power conver…

chemistry.chemical_compoundMaterials sciencechemistryCovalent bondPhotovoltaic systemThermalPhysical chemistryDensity functional theoryElectron donorGeneral ChemistryMesoporous materialTriple bondPerovskite (structure)
researchProduct

Metal-Oxide-Free Methylammonium Lead Iodide Perovskite-Based Solar Cells: the Influence of Organic Charge Transport Layers

2014

Metal-oxide-free methylammonium lead iodide perovskite-based solar cells are prepared using a dual-source thermal evaporation method. This method leads to high quality reproducible films with large crystal domain sizes allowing for an in depth study of the effect of perovskite film thickness and the nature of the electron and hole blocking layers on the device performance. The power conversion efficiency increases from 4.7% for a device with only an organic electron blocking layer to almost 15% when an organic hole blocking layer is also employed. In addition to the in depth study on small area cells, larger area cells (approx. 1 cm(-2)) are prepared and exhibit efficiencies in excess of 10…

chemistry.chemical_classificationMaterials scienceRenewable Energy Sustainability and the EnvironmentBlocking (radio)Energy conversion efficiencyInorganic chemistryIodideOxideElectronMetalCrystalchemistry.chemical_compoundchemistryChemical engineeringvisual_artvisual_art.visual_art_mediumGeneral Materials SciencePerovskite (structure)Advanced Energy Materials
researchProduct

A new cross-linkable 9,10-diphenylanthracene derivative as a wide bandgap host for solution-processed organic light-emitting diodes

2018

Efficient organic light-emitting diodes (OLEDs) can be obtained using multilayered architectures where the processes of charge injection, transport and recombination are separated and optimized in each layer. Processing these structures from solution requires strategies to avoid redissolution or damage of the previously deposited layers. Several reports have demonstrated the development of cross-linkable hole transport materials, while less literature describes the synthesis and applications of such wide bandgap host materials for multilayered OLEDs. In this work we introduce a cross-linkable derivative of 9-(4-(10-phenylanthracene-9-yl)phenyl)-9H-carbazole incorporating styrene moieties (S…

chemistry.chemical_classificationMaterials sciencebusiness.industryBand gapRadical polymerization910-Diphenylanthracene02 engineering and technologyGeneral ChemistryPolymerElectroluminescence010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical scienceschemistry.chemical_compoundchemistryMaterials ChemistryOLEDOptoelectronics0210 nano-technologybusinessLayer (electronics)DiodeJournal of Materials Chemistry C
researchProduct

Non-Planar and Flexible Hole-Transporting Materials from Bis-Xanthene and Bis-Thioxanthene Units for Perovskite Solar Cells

2019

Two new hole-transporting materials (HTMs), BX-OMeTAD and BTX-OMeTAD, based on xanthene and thioxanthene units, respectively, and bearing p-methoxydiphenylamine peripheral groups, are presented for their use in perovskite solar cells (PSCs). The novelty of the newly designed molecules relies on the use of a single carbon-carbon bond ‘C−C’ as a linker between the two functionalized heterocycles, which increases the flexibility of the molecule compared with the more rigid structure of the widely used HTM spiro-OMeTAD. The new HTMs display a limited absorbance in the visible region, due to the lack of conjugation between the two molecular halves, and the chemical design used has a remarkably i…

XantheneOrganic ChemistryEnergy conversion efficiencyThioxantheneBiochemistryCombinatorial chemistryCatalysisInorganic ChemistryAbsorbancechemistry.chemical_compoundPlanarchemistryDrug DiscoveryMoleculePhysical and Theoretical ChemistryLinkerPerovskite (structure)
researchProduct

Heteroatom Effect on Star-Shaped Hole-Transporting Materials for Perovskite Solar Cells

2018

Materials scienceHeteroatom02 engineering and technologyStar (graph theory)010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciences0104 chemical sciencesElectronic Optical and Magnetic MaterialsBiomaterialsCrystallographyElectrochemistry0210 nano-technologyPerovskite (structure)
researchProduct

Molecular Engineering of Iridium Blue Emitters Using Aryl N‐Heterocyclic Carbene Ligands

2016

The synthesis of a new series of neutral bis[2-(2,4-difluorophen-2-yl)pyridine][1-(2-aryl)-3-methylimidazol-2-ylidene]iridium(III) complexes is reported. Each complex has been characterized by NMR spectroscopy, UV/Vis spectrophotometry, and cyclic voltammetry, and the photophysical properties examined in depth. Furthermore, two of the complexes have been characterized by single-crystal X-ray diffraction analysis. By systematically modifying the cyclometalating aryl group on the N-heterocyclic carbene (NHC) ligand from 2,4-dimethoxyphenyl to 6-methoxy-2-methyl-3-pyridyl, the energy levels of the Ir complexes were modified to produce new blue emitters with increased HOMO and triplet-state ene…

LigandArylchemistry.chemical_element02 engineering and technologyNuclear magnetic resonance spectroscopy010402 general chemistry021001 nanoscience & nanotechnologyPhotochemistry01 natural sciences0104 chemical sciencesInorganic Chemistrychemistry.chemical_compoundchemistryPyridineOLEDIridiumCyclic voltammetry0210 nano-technologyCarbeneEuropean Journal of Inorganic Chemistry
researchProduct

Hole transporting materials based on benzodithiophene and dithienopyrrole cores for efficient perovskite solar cells

2018

The development of highly efficient hole transporting materials (HTMs) for perovskite solar cells (PSCs) is still one of the most thrilling research subjects in the development of this emerging photovoltaic technology. Inner ring engineering of the aromatic core of new HTMs – consisting of three fused rings endowed with four triarylamine units – reveals major performance effects over the fabricated devices. In particular, substitution of the central pyrrole ring in dithienopyrrole (DTP) by a benzene ring – benzodithiophene (BDT) – allows enhancing the power conversion efficiency from 15.6% to 18.1%, in devices employing mixed-perovskite (FAPbI3)0.85(MAPbBr3)0.15 (MA: CH3NH3+, FA: NHCHNH3+) …

PhotoluminescenceMaterials scienceRenewable Energy Sustainability and the Environmentbusiness.industryPhotovoltaic systemEnergy conversion efficiency02 engineering and technologyGeneral ChemistryConductivity010402 general chemistry021001 nanoscience & nanotechnologyRing (chemistry)01 natural sciences7. Clean energy0104 chemical sciencesActive layerOptoelectronicsGeneral Materials ScienceDensity functional theory0210 nano-technologybusinessPerovskite (structure)
researchProduct

Flexible high efficiency perovskite solar cells

2014

Flexible perovskite based solar cells with power conversion efficiencies of 7% have been prepared on PET based conductive substrates. Extended bending of the devices does not deteriorate their performance demonstrating their suitability for roll to roll processing.

Materials scienceFarbstoff- und PerowskitsolarzellenSolarthermieNanotechnologyBending7. Clean energyRoll-to-roll processingFarbstoffEnvironmental ChemistryElectrical conductorMaterialsCèl·lules fotoelèctriquesPerovskite (structure)Renewable Energy Sustainability and the Environmentbusiness.industryelectrodePollutionsolar cellNuclear Energy and EngineeringTCOOptoelectronicsOrganische und Neuartige SolarzellensputteringbusinessSolarthermie und Optik
researchProduct

Tuning the photophysical properties of cationic iridium(iii) complexes containing cyclometallated 1-(2,4-difluorophenyl)-1H-pyrazole through function…

2012

Four new heteroleptic iridium(III) complexes in the family [Ir(dfppz)(2)((NN)-N-boolean AND)](+), where Hdfppz = 1-(2,4-difluorophenyl)-1H-pyrazole and (NN)-N-boolean AND = 6-phenyl-2,2'-bipyridine (1), 4,4'-(di-tert-butyl)-6-phenyl-2,2'-bipyridine (2), 4,4'-(di-tert-butyl)-6,6'-diphenyl-2,2'-bipyridine (3) and 4,4'-bis(dimethylamino)-2,2'-bipyridine (4), have been synthesized as the hexafluoridophosphate salts and fully characterized. Single crystal structures of ligand 3 and the precursor [Ir-2(dfppz)(4)(mu-Cl)(2)] have been determined, along with the structures of the complexes 4{[Ir(dfppz)(2)(1)][PF6]}center dot 3CH(2)Cl(2), [Ir(dfppz)(2)(3)][PF6]center dot CH2Cl2 and [Ir(dfppz)(2)(4)][…

Absorption spectroscopyChemistryLigandAnalytical chemistrychemistry.chemical_element02 engineering and technologyNuclear magnetic resonance spectroscopyPyrazole010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences22'-Bipyridine0104 chemical sciencesInorganic Chemistrychemistry.chemical_compoundCrystallographyIridiumTriplet state0210 nano-technologyAcetonitrileDalton Trans.
researchProduct

Improving the Long‐Term Stability of Doped Spiro‐Type Hole‐Transporting Materials in Planar Perovskite Solar Cells

2021

The improvement of the long-term stability of perovskite-based solar cells (PSCs) toward commercialization is closely linked to the development of cutting-edge charge-transporting materials. The progress on the design and the synthesis of new hole-transporting materials (HTMs) is synergistically attaining both top efficiencies and promising stability. Herein, the synthesis and characterization of two doped-HTMs based on electron-rich spiranic cores, namely, 9H-quinolinophenoxazine (spiro-POZ) and 9H-quinolinophenothiazine (spiro-PTZ), are presented. The novel HTMs exhibit excellent solubility, optimal highest occupied molecular orbital energy, and excellent thermal stability with glass tran…

Materials sciencebusiness.industryDopingTrihalideEnergy Engineering and Power TechnologyAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsPlanarOptoelectronicsThermal stabilityElectrical and Electronic EngineeringbusinessGlass transitionMesoporous materialHOMO/LUMOPerovskite (structure)Solar RRL
researchProduct

Hole-Transporting Materials for Perovskite Solar Cells Employing an Anthradithiophene Core

2021

A decade after the report of the first efficient perovskite-based solar cell, development of novel hole-transporting materials (HTMs) is still one of the main topics in this research field. Two of the main advance vectors of this topic lie in obtaining materials with enhanced hole-extracting capability and in easing their synthetic cost. The use of anthra[1,9-bc:5,10-b'c']dithiophene (ADT) as a flat π-conjugated frame for bearing arylamine electroactive moieties allows obtaining two novel highly efficient HTMs from very cheap precursors. The solar cells fabricated making use of the mixed composition (FAPbI3)0.85(MAPbBr3)0.15 perovskite and the novel ADT-based HTMs show power conversion effi…

Materials scienceHigh conductivitybusiness.industry02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology7. Clean energy01 natural sciences0104 chemical scienceslaw.inventionCore (optical fiber)lawSolar cellMoleculeOptoelectronicsGeneral Materials ScienceDensity functional theory0210 nano-technologybusinessPerovskite (structure)
researchProduct

Advances in solution-processed near-infrared light-emitting diodes

2021

A summary of recent advances in the near-infrared light-emitting diodes that are fabricated by solution-processed means, with coverage of devices based on organic semiconductors, halide perovskites and colloidal quantum dots.

Materials scienceOptical communicationPhysics::Opticsquantum dotsNanotechnologyelectroluminescenceamplified spontaneous emissionCondensed Matter::Materials SciencenanocrystalsNight visionluminescenceMaterialsperovskiteDiodecomplexesNear infrared lightbusiness.industrydiffusionCondensed Matter::Mesoscopic Systems and Quantum Hall EffectAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsSolution processedOrganic semiconductorImproved performanceSemiconductorhighly efficientLàsers de colorantsbusinessdevices
researchProduct

Pulsed-current versus constant-voltage light-emitting electrochemical cells with trifluoromethyl-substituted cationic iridium(iii) complexes

2013

We report on five cationic iridium(III) complexes with cyclometalating 2-(3′-trifluoromethylphenyl)pyridine and a diimine, [(C⁁N)2Ir(N⁁N)](PF6), N⁁N = 4,4′-R2-2,2′-dipyridyl or 4,7-R2-1,10-phenanthroline (R = H, Me, tert-Bu, Ph), and characterize three of them by crystal structure analysis. The complexes undergo oxidation of the Ir–aryl fragment at 1.13–1.16 V (against ferrocene couple) and reduction of the N⁁N ligand at −1.66 V to −1.86 V, and have a redox gap of 2.84–2.99 V. The complexes exhibit bluish-green to green-yellow phosphorescence in an argon-saturated dichloromethane solution at room temperature with a maximum at 486–520 nm, quantum yield of 61–67%, and an excited-state lifetim…

Materials scienceAnalytical chemistryQuantum yieldchemistry.chemical_elementGeneral ChemistryCrystal structureElectroluminescenceElectrochemical cellchemistry.chemical_compoundFerrocenechemistryMaterials ChemistryIridiumPhosphorescenceDiimineJournal of Materials Chemistry C
researchProduct

Bis-Sulfone- and Bis-Sulfoxide-Spirobifluorenes: Polar Acceptor Hosts with Tunable Solubilities for Blue-Phosphorescent Light-Emitting Devices

2016

Bis-sulfone- and bis-sulfoxide-spirobifluorenes are a promising class of high-triplet-energy electron-acceptor hosts for blue phosphorescent light-emitting devices. The molecular design and synthetic route are simple and facilitate tailoring of the solubilities of the host materials without lowering the high-energy triplet state. The syntheses and characterization (including single-crystal structures) of four electron-accepting hosts are reported; the trend in their reduction potentials is consistent with the electron-withdrawing nature of the sulfone or sulfoxide substituents. Emission maxima of 421–432 nm overlap with the MLCT absorption of the sky-blue emitter bis(4,6-difluorophenyl-pyri…

Phosphine oxidechemistry.chemical_classificationOrganic ChemistrySulfoxide02 engineering and technologyElectron acceptor010402 general chemistry021001 nanoscience & nanotechnologyPhotochemistry01 natural sciencesAcceptor0104 chemical sciencesSulfonechemistry.chemical_compoundchemistryOLEDPhysical and Theoretical ChemistryTriplet state0210 nano-technologyPhosphorescenceEuropean Journal of Organic Chemistry
researchProduct

Perovskite Solar Cells: Heteroatom Effect on Star-Shaped Hole-Transporting Materials for Perovskite Solar Cells (Adv. Funct. Mater. 31/2018)

2018

BiomaterialsMaterials scienceChemical engineeringHeteroatomElectrochemistryStar (graph theory)Condensed Matter PhysicsElectronic Optical and Magnetic MaterialsPerovskite (structure)Advanced Functional Materials
researchProduct

Saddle-like, π-conjugated, cyclooctatetrathiophene-based, hole-transporting material for perovskite solar cells

2019

A flexible, saddle-like, π-conjugated skeleton composed of four fused thiophene rings forming a cyclooctatetrathiophene (CoTh) with four triphenylamines (CoTh-TTPA) is presented as a hole-transporting material (HTM) for perovskite solar cells. The new HTM shows a bright red color stemming from a direct conjugation between the TPA groups and the central CoTh scaffold. This results in a charge transfer band due to the combination of the weak acceptor moiety, the CoTh unit, and the electron-donating p-methoxytriphenylamine groups. CoTh-TTPA exhibits a suitable highest-occupied molecular orbital (HOMO) level in relation to the valence band edge of the perovskite, which ensures efficient hole ex…

Materials sciencePhotoluminescence02 engineering and technologyGeneral ChemistryConductivityConjugated system010402 general chemistry021001 nanoscience & nanotechnology7. Clean energy01 natural sciencesAcceptor0104 chemical scienceschemistry.chemical_compoundCrystallographychemistryMaterials ChemistryThiopheneMoietyMolecular orbital0210 nano-technologyPerovskite (structure)
researchProduct

High‐Efficiency Perovskite Solar Cells Using Molecularly Engineered, Thiophene‐Rich, Hole‐Transporting Materials: Influence of Alkyl Chain Length on …

2016

The synthesis and characterization of a series of novel small-molecule hole-transporting materials (HTMs) based on an anthra[1,2-b:4,3-b′:5,6-b′′:8,7-b′′′]tetrathiophene (ATT) core are reported. The new compounds follow an easy synthetic route and have no need of expensive purification steps. The novel HTMs are tested in perovskite solar cells and power conversion efficiencies (PCE) of up to 18.1% under 1 sun irradiation are measured. This value is comparable with the 17.8% efficiency obtained using 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9′-spirobifluorene as a reference compound. Similarly, a significant quenching of the photoluminescence in the first nanosecond is observed, ind…

chemistry.chemical_classificationPhotoluminescenceQuenching (fluorescence)Materials scienceRenewable Energy Sustainability and the EnvironmentEnergy conversion efficiency02 engineering and technologyConductivity010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences7. Clean energy0104 chemical scienceschemistry.chemical_compoundChemical engineeringchemistryThiopheneOrganic chemistryGeneral Materials ScienceSolubility0210 nano-technologyAlkylPerovskite (structure)Advanced Energy Materials
researchProduct

Azatruxene‐Based, Dumbbell‐Shaped, Donor–π‐Bridge–Donor Hole‐Transporting Materials for Perovskite Solar Cells

2020

Three novel donor-π-bridge-donor (D-π-D) hole-transporting materials (HTMs) featuring triazatruxene electron-donating units bridged by different 3,4-ethylenedioxythiophene (EDOT) π-conjugated linkers have been synthesized, characterized, and implemented in mesoporous perovskite solar cells (PSCs). The optoelectronic properties of the new dumbbell-shaped derivatives (DTTXs) are highly influenced by the chemical structure of the EDOT-based linker. Red-shifted absorption and emission and a stronger donor ability were observed in passing from DTTX-1 to DTTX-2 due to the extended π-conjugation. DTTX-3 featured an intramolecular charge transfer between the external triazatruxene units and the azo…

Electron mobilityPhotoluminescence010405 organic chemistryChemistryOrganic ChemistryEnergy conversion efficiencyGeneral ChemistryConductivity010402 general chemistry01 natural sciencesCatalysis0104 chemical sciencesCrystallographyIntramolecular forceMesoporous materialAbsorption (electromagnetic radiation)Perovskite (structure)Chemistry – A European Journal
researchProduct

Phosphine Oxide Derivative as a Passivating Agent to Enhance the Performance of Perovskite Solar Cells

2021

Defects of metal-halide perovskites detrimentally influence the optoelectronic properties of the thin film and, ultimately, the photovoltaic performance of perovskite solar cells (PSCs). Especially, defect-mediated nonradiative recombination that occurs at the perovskite interface significantly limits the power conversion efficiency (PCE) of PSCs. In this regard, interfacial engineering or surface treatment of perovskites has become a viable strategy for reducing the density of surface defects, thereby improving the PCE of PSCs. Here, an organic molecule, tris(5-((tetrahydro-2H-pyran-2-yl)oxy)pentyl) phosphine oxide (THPPO), is synthesized and introduced as a defect passivation agent in PSC…

Phosphine oxideMaterials sciencePhotovoltaic systemEnergy Engineering and Power Technology02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology7. Clean energy01 natural sciences0104 chemical scienceschemistry.chemical_compoundchemistryChemical engineeringMaterials ChemistryElectrochemistryChemical Engineering (miscellaneous)Lewis acids and basesElectrical and Electronic EngineeringThin film0210 nano-technologyÒxidsMaterialsDerivative (chemistry)Cèl·lules fotoelèctriquesPerovskite (structure)ACS Applied Energy Materials
researchProduct

An Ester-Substituted Iridium Complex for Efficient Vacuum-Processed Organic Light-Emitting Diodes

2009

An orange-red-emitting iridium complex (N958) was prepared, and its photophysical and device-based characteristics were investigated. Despite N958 displaying quite poor photophysical properties in solution (acetonitrile), organic light-emitting diode (OLED) devices based on the complex exhibit an efficiency close to 10%.

LuminescenceMaterials scienceLightGeneral Chemical Engineeringchemistry.chemical_elementEstersIridiumPhotochemistryEnergy conversionOrganic light-emitting diodesAbsorptionchemistry.chemical_compoundPhotophysicsGeneral EnergychemistryOrganometallic CompoundsOLEDEnvironmental ChemistryEnergy transformationGeneral Materials ScienceIridiumAcetonitrileElectrodesDiodeChemSusChem
researchProduct

Bis(arylimidazole) Iridium Picolinate Emitters and Preferential Dipole Orientation in Films

2018

The straightforward synthesis and photophysical properties of a new series of heteroleptic iridium(III) bis(2-arylimidazole) picolinate complexes are reported. Each complex has been characterized by nuclear magnetic resonance, UV-vis, cyclic voltammetry, and photoluminescent angle dependency, and the emissive properties of each are described. The preferred orientation of transition dipoles in emitter/host thin films indicated more preferred orientation than homoleptic complex Ir(ppy)3.

PhotoluminescenceMaterials sciencePicolinate emittersGeneral Chemical EngineeringThin filmschemistry.chemical_elementHOL - Holst02 engineering and technologyOrientation (graph theory)010402 general chemistry01 natural sciencesArticleEmissive propertieslcsh:Chemistrychemistry.chemical_compoundIridiumThin filmHomolepticCommon emitterTS - Technical SciencesIndustrial InnovationGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesDipoleCrystallographychemistrylcsh:QD1-999Nano TechnologyCyclic voltammetryElectronics0210 nano-technology
researchProduct

High-Efficiency Perovskite Solar Cells using Molecularly-Engineered, Thiophene-Rich,Hole-Transporting Materials: Influence of Alkyl Chain Length on P…

2016

The synthesis and characterization of a series of novel small-molecule hole-transporting materials (HTMs) based on an anthra[1,2-b:4,3-b′:5,6-b′′:8,7-b′′′]tetrathiophene (ATT) core are reported. The new compounds follow an easy synthetic route and have no need of expensive purification steps. The novel HTMs were tested in perovskite solar cells (PSCs) and power conversion efficiencies (PCE) of up to 18.1 % under 1 sun irradiation were 2 measured. This value is comparable with the 17.8 % efficiency obtained using spiroOMeTAD as a reference compound. Similarly, a significant quenching of the Photoluminescence in the first nanosecond is observed, indicative of effective hole transfer.Additiona…

Química orgánica
researchProduct

CCDC 1445197: Experimental Crystal Structure Determination

2016

Related Article: Sadig Aghazada, Aron J. Huckaba, Antonio Pertegas, Azin Babaei, Giulia Grancini, Iwan Zimmermann, Henk Bolink and Mohammad Khaja Nazeeruddin|2016|Eur.J.Inorg.Chem.||5089|doi:10.1002/ejic.201600971

Space GroupCrystallographyCrystal SystemCrystal Structure(2-methyl-6-methoxy-3-(3-methylimidazol-1-yl-2-ylidene)pyridin-4-yl)-bis(35-difluoro-2-(2-pyridyl)phenyl)-iridiumCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1813461: Experimental Crystal Structure Determination

2018

Related Article: Inés García-Benito, Iwan Zimmermann, Javier Urieta-Mora, Juan Aragó, Joaquín Calbo, Josefina Perles, Alvaro Serrano, Agustín Molina-Ontoria, Enrique Ortí, Nazario Martín, Mohammad Khaja Nazeeruddin|2018|Adv.Energy Mater.|28|1801734|doi:10.1002/adfm.201801734

Space GroupCrystallographyCrystal System4-(58-bis{4-[bis(4-methoxyphenyl)amino]phenyl}benzo[12-b:34-b':56-b'']trisselenophen-2-yl)-NN-bis(4-methoxyphenyl)aniline toluene solvateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1445196: Experimental Crystal Structure Determination

2016

Related Article: Sadig Aghazada, Aron J. Huckaba, Antonio Pertegas, Azin Babaei, Giulia Grancini, Iwan Zimmermann, Henk Bolink and Mohammad Khaja Nazeeruddin|2016|Eur.J.Inorg.Chem.||5089|doi:10.1002/ejic.201600971

Space GroupCrystallographyCrystal SystemCrystal Structure(26-dimethoxy-3-(3-methylimidazol-1-yl-2-ylidene)pyridin-4-yl)-bis(35-difluoro-2-(2-pyridyl)phenyl)-iridiumCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1583689: Experimental Crystal Structure Determination

2018

Related Article: Aron J. Huckaba, Alessia Senes, Sadig Aghazada, Azin Babaei, Stefan C. J. Meskers, Iwan Zimmermann, Pascal Schouwink, Natalia Gasilova, René A. J. Janssen, Henk J. Bolink, Mohammad Khaja Nazeeruddin|2018|ACS Omega|3|2673|doi:10.1021/acsomega.8b00137

bis(2-{1-[246-tri-isopropylphenyl]-1H-imidazol-2-yl}phenyl)-(pyridine-2-carboxylato)-iridium hydrateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 974892: Experimental Crystal Structure Determination

2016

Related Article: Cathrin D. Ertl, Henk J. Bolink, Catherine E. Housecroft, Edwin C. Constable, Enrique Ortí, José M. Junquera-Hernández, Markus Neuburger, Nail M. Shavaleev, Mohammad Khaja Nazeeruddin and David Vonlanthen|2016|Eur.J.Org.Chem.|2016|2037|doi:10.1002/ejoc.201600247

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters27-bis(Phenylsulfonyl)-99'-spirobi[fluorene] dichloromethane solvateExperimental 3D Coordinates
researchProduct

CCDC 1583690: Experimental Crystal Structure Determination

2018

Related Article: Aron J. Huckaba, Alessia Senes, Sadig Aghazada, Azin Babaei, Stefan C. J. Meskers, Iwan Zimmermann, Pascal Schouwink, Natalia Gasilova, René A. J. Janssen, Henk J. Bolink, Mohammad Khaja Nazeeruddin|2018|ACS Omega|3|2673|doi:10.1021/acsomega.8b00137

Space GroupCrystallographybis(2-{1-[26-di-isopropylphenyl]-1H-imidazol-2-yl}phenyl)-(4-methoxypyridine-2-carboxylate)-iridium hemihydrateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1813460: Experimental Crystal Structure Determination

2018

Related Article: Inés García-Benito, Iwan Zimmermann, Javier Urieta-Mora, Juan Aragó, Joaquín Calbo, Josefina Perles, Alvaro Serrano, Agustín Molina-Ontoria, Enrique Ortí, Nazario Martín, Mohammad Khaja Nazeeruddin|2018|Adv.Energy Mater.|28|1801734|doi:10.1002/adfm.201801734

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters4-(58-bis{4-[bis(4-methoxyphenyl)amino]phenyl}benzo[12-b:34-b':56-b'']tristhiophen-2-yl)-NN-bis(4-methoxyphenyl)aniline toluene solvateExperimental 3D Coordinates
researchProduct

CCDC 1813459: Experimental Crystal Structure Determination

2018

Related Article: Inés García-Benito, Iwan Zimmermann, Javier Urieta-Mora, Juan Aragó, Joaquín Calbo, Josefina Perles, Alvaro Serrano, Agustín Molina-Ontoria, Enrique Ortí, Nazario Martín, Mohammad Khaja Nazeeruddin|2018|Adv.Energy Mater.|28|1801734|doi:10.1002/adfm.201801734

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters4-(58-bis{4-[bis(4-methoxyphenyl)amino]phenyl}benzo[12-b:34-b':56-b'']trifuran-2-yl)-NN-bis(4-methoxyphenyl)aniline toluene solvateExperimental 3D Coordinates
researchProduct

CCDC 993287: Experimental Crystal Structure Determination

2016

Related Article: Cathrin D. Ertl, Henk J. Bolink, Catherine E. Housecroft, Edwin C. Constable, Enrique Ortí, José M. Junquera-Hernández, Markus Neuburger, Nail M. Shavaleev, Mohammad Khaja Nazeeruddin and David Vonlanthen|2016|Eur.J.Org.Chem.|2016|2037|doi:10.1002/ejoc.201600247

Space GroupCrystallographyCrystal System27-bis(Pentylsulfonyl)-99'-spirobi[fluorene]Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 974893: Experimental Crystal Structure Determination

2016

Related Article: Cathrin D. Ertl, Henk J. Bolink, Catherine E. Housecroft, Edwin C. Constable, Enrique Ortí, José M. Junquera-Hernández, Markus Neuburger, Nail M. Shavaleev, Mohammad Khaja Nazeeruddin and David Vonlanthen|2016|Eur.J.Org.Chem.|2016|2037|doi:10.1002/ejoc.201600247

Space GroupCrystallography27-bis(Mesitylsulfonyl)-99'-spirobi[fluorene]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1584183: Experimental Crystal Structure Determination

2018

Related Article: Aron J. Huckaba, Alessia Senes, Sadig Aghazada, Azin Babaei, Stefan C. J. Meskers, Iwan Zimmermann, Pascal Schouwink, Natalia Gasilova, René A. J. Janssen, Henk J. Bolink, Mohammad Khaja Nazeeruddin|2018|ACS Omega|3|2673|doi:10.1021/acsomega.8b00137

Space GroupCrystallographybis(2-{1-[26-di-isopropylphenyl]-1H-imidazol-2-yl}phenyl)-(4-methylpyridine-2-carboxylato)-iridiumCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct