0000000001300545

AUTHOR

P. Markowitz

showing 45 related works from this author

Measurement of the magnetic form factor of the neutron

1993

The [sup 2]H([ital e],[ital e][prime][ital n])[sup 1]H quasielastic cross section was measured at [ital Q][sup 2] values of 0.109, 0.176, and 0.255 (GeV/[ital c])[sup 2]. The neutron detection efficiency was determined by the associated particle technique with the [sup 2]H([gamma],[ital pn]) reaction for each of the three neutron kinetic energies. These [sup 2]H([ital e],[ital e][prime][ital n]) measurements of the coincidence cross sections are the first at low [ital Q][sup 2]. The cross sections are sensitive primarily to the neutron magnetic form factor [ital G][sub [ital M]][sup [ital n]] at these kinematics. The extracted [ital G][sub [ital M]][sup [ital n]] values have smaller uncerta…

PhysicsNuclear reactionNuclear and High Energy PhysicsParticle propertiesMagnetic form factorAnalytical chemistryNeutronAtomic physicsPhysical Review C
researchProduct

A glimpse of gluons through deeply virtual compton scattering on the proton

2017

The internal structure of nucleons (protons and neutrons) remains one of the greatest outstanding problems in modern nuclear physics. By scattering high-energy electrons off a proton we are able to resolve its fundamental constituents and probe their momenta and positions. Here we investigate the dynamics of quarks and gluons inside nucleons using deeply virtual Compton scattering (DVCS)—a highly virtual photon scatters off the proton, which subsequently radiates a photon. DVCS interferes with the Bethe-Heitler (BH) process, where the photon is emitted by the electron rather than the proton. We report herein the full determination of the BH-DVCS interference by exploiting the distinct energ…

Genetics and Molecular Biology (all)PhotonProtonHigh Energy Physics::LatticeNuclear TheoryGeneral Physics and AstronomyVirtual particleparton: distribution functionBiochemistry01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]p: structure functionNuclear Experiment (nucl-ex)[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]lcsh:ScienceNuclear ExperimentNuclear ExperimentPhysicsenergy: highMultidisciplinarystrong interactionChemistry (all)QCompton scattering: form factorphoton: energy spectrumHigh Energy Physics - Phenomenologyconfinementelectron p --> electron p photonchannel cross section: measuredQuarkelectron p: deep inelastic scatteringParticle physicselectron: polarized beamScienceStrong interactionFOS: Physical sciencesBethe-Heitler[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]ArticleGeneral Biochemistry Genetics and Molecular Biologyenergy dependencequarkPhysics and Astronomy (all)[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]photon: emissiondeeply virtual Compton scattering0103 physical sciencesstructure010306 general physicsquantum mechanics: interference010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyCompton scatteringGeneral ChemistrygluonsensitivityGluon[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Quark–gluon plasmalcsh:Q[ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::ExperimentholographyChemistry (all); Biochemistry Genetics and Molecular Biology (all); Physics and Astronomy (all)photon: virtualexperimental results
researchProduct

Measurement of thett¯production cross section inpp¯collisions ats=1.96  TeVusing soft electronb-tagging

2010

The authors present a measurement of the t{bar t} production cross section using events with one charged lepton and jets from p{bar p} collisions at a center-of-mass energy of 1.96 TeV. A b-tagging algorithm based on the probability of displaced tracks coming from the event interaction vertex is applied to identify b quarks from top decay. Using 318 pb{sup -1} of data collected with the CDF II detector, they measure the t{bar t} production cross section in events with at least one restrictive (tight) b-tagged jet and obtain 8.9{sub -1.0}{sup +1.0}(stat.){sub -1.0}{sup +1.1}(syst.) pb. The cross section value assumes a top quark mass of m{sub t} is presented in the paper. This result is cons…

Top quarkCollider physicsHadronTevatronGeneral Physics and AstronomyElementary particleKinematicsElectronJet (particle physics)01 natural sciences7. Clean energyParticle identificationlaw.inventionlawInvariant massFermilabNuclear ExperimentQuantum chromodynamicsPhysicsLarge Hadron ColliderLuminosity (scattering theory)Supersymmetryb-taggingHadronizationTransverse planeProduction (computer science)Collider Detector at FermilabQuarkSemileptonic decayNuclear and High Energy PhysicsParticle physicsBar (music)Astrophysics::High Energy Astrophysical PhenomenaBottom quarkMeasure (mathematics)Standard ModelNuclear physicsCross section (physics)Particle decay0103 physical sciencesCollider010306 general physicsCompact Muon SolenoidMuonBranching fraction010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyMultiplicity (mathematics)FermionVertex (geometry)Pair productionHigh Energy Physics::ExperimentEnergy (signal processing)Bar (unit)LeptonPhysical Review D
researchProduct

Rosenbluth separation of the $\pi^0$ Electroproduction Cross Section off the Neutron

2017

We report the first longitudinal/transverse separation of the deeply virtual exclusive $\pi^0$ electroproduction cross section off the neutron and coherent deuteron. The corresponding four structure functions $d\sigma_L/dt$, $d\sigma_T/dt$, $d\sigma_{LT}/dt$ and $d\sigma_{TT}/dt$ are extracted as a function of the momentum transfer to the recoil system at $Q^2$=1.75 GeV$^2$ and $x_B$=0.36. The $ed \to ed\pi^0$ cross sections are found compatible with the small values expected from theoretical models. The $en \to en\pi^0$ cross sections show a dominance from the response to transversely polarized photons, and are in good agreement with calculations based on the transversity GPDs of the nucle…

longitudinalNuclear Theoryn: structure function[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]momentum transfer dependenceelectron n: scatteringHigh Energy Physics - Experimentgeneralized parton distribution: transversity[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]hard exclusive electroproductionrecoil[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]polarization: transverse[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear ExperimentNuclear Experimentmesonsflavorgeneralized parton distributionsscatteringgeneralized parton distributions; hard exclusive electroproduction; mesons; scatteringdeuteron: structure functionelectron deuteron --> electron deuteron pi0electron deuteron: deep inelastic scatteringnucleon: generalized parton distributionphoton: polarizationcoherencepi0: electroproductionHigh Energy Physics::Experimentexperimental results
researchProduct

"Table 28" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 36" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 17" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 40" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 39" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 9" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 22" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 31" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 34" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 33" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 6" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 11" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 37" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 29" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 1" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 21" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 25" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 2" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 32" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 5" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 16" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 24" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 23" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 14" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 26" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 20" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 8" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 10" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 13" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 27" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 38" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 35" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 15" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 30" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 19" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 12" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 4" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 3" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 18" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 1" of "Measurement of the magnetic form factor of the neutron"

1996

No description provided.

Electron productionMOME- DEUT --> P N E-ExclusiveFORMFACTOR
researchProduct

"Table 7" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct