0000000001301551
AUTHOR
Rodolphe Clérac
Polymorphism in a π stacked Blatter radical: structures and magnetic properties of 3-(phenyl)-1-(pyrid-2-yl)-1,4-dihydrobenzo[ e ][1,2,4]triazin-4-yl
International audience; 3-(Phenyl)-1-(pyrid-2-yl)-1,4-dihydrobenzo[e][1,2,4]triazin-4-yl (2) demonstrates the first example of polymorphism in the family of Blatter radicals. Two polymorphs, 2α and 2β, have been identified and characterized by single crystal X-ray diffractometry and magnetic susceptibility measurements to investigate their magnetism–structure correlations. Both polymorphs form one-dimensional (1D) π stacks of evenly spaced radicals with distinctly different π–π overlap modes. Within the 1D π stacks, radicals are located at evenly interplanar distances, 3.461 Å for 2α and 3.430 Å for 2β. Magnetic susceptibility studies indicate that both polymorphs exhibit antiferromagnetic …
Room-Temperature Magnetic Bistability in a Salt of Organic Radical Ions
International audience; Cocrystallization of 7,7′,8,8′-tetracyanoquinodimethane radical anion (TCNQ −•) and 3-methylpyridinium-1,2,3,5dithiadiazolyl radical cation (3-MepyDTDA +•) afforded isostructural acetonitrile (MeCN) or propionitrile (EtCN) solvates containing cofacial π dimers of homologous components. Loss of lattice solvent from the diamagnetic solvates above 366 K affords a high-temperature paramagnetic phase containing discrete TCNQ −• and weakly bound π dimers of 3-MepyDTDA +• , as evidenced by X-ray diffraction methods and magnetic susceptibility measurements. Below 268 K, a first-order phase transition occurs, leading to a low-temperature diamagnetic phase with TCNQ −• σ dimer…
Role of Alkyl Substituent and Solvent on the Structural, Thermal, and Magnetic Properties of Binary Radical Salts of 1,2,3,5-Dithia- or Diselenadiazolyl Cations and the TCNQ Anion
The synthesis, structural, thermal, and magnetic properties of a series of simple binary organic salts based on the radical anion of 7,7,8,8-tetracyanoquinodimethane (TCNQ) and 4-(N-alkylpyridinium-3-yl)-1,2,3,5-dithiadiazolyl (DTDA), 1R (R = Et, Pr, Bu), radical cations and their heavier selenium analogues (DSDA), 2R, are described. Single-crystal X-ray structural analyses reveal that short alkyl substituents on the pyridinium moiety of DTDA/DSDA cations lead to crystallization of isostructural acetonitrile (MeCN) solvates 1Et·MeCN, 1Pr·MeCN, 2Et·MeCN, and 2Pr·MeCN with trans-cofacial DTDA radical cation and eclipsed-cofacial TCNQ radical anion dimers. A slight increase in the substituent …
Dimensionality Switching Through a Thermally Induced Reversible Single-Crystal-to-Single-Crystal Phase Transition in a Cyanide Complex
International audience; The heterometallic hexanuclear cyanide-bridged complex {[Mn(bpym)(H(2)O)](2)[Fe(HB(pz)(3))(CN)(3)](4)} (1), its C(15)N and D(2)O enriched forms {[Mn(bpym)(H(2)O)](2)[Fe(HB(pz)(3))(C(15)N)(3)](4)} (2) and {[Mn(bpym)(D(2)O)](2)[Fe(HB(pz)(3))(CN)(3)](4)} (3), and the hexanuclear derivative complex {[Mn(bpym)(H(2)O)](2)[Fe(B(pz)(4))(CN)(3)](4)}*4H(2)O (4) [bpym = 2,2'-bipyrimidine, HB(pz)(3)(-) = hydrotris(1-pyrazolyl)borate, B(pz)(4)(-) = tetra(1-pyrazolyl)borate] have been synthesized. Their structures have been determined through single-crystal X-ray crystallography at different temperatures. Whereas 3 and 4 maintain a discrete hexanuclear motif during the entire temp…
Coordination Complexes of a Neutral 1,2,4-Benzotriazinyl Radical Ligand: Synthesis, Molecular and Electronic Structures, andMagnetic Properties
A series of d-block metal complexes of the recently reported coordinating neutral radical ligand 1-phenyl-3-(pyrid-2-yl)-1,4-dihydro-1,2,4-benzotriazin-4-yl (1) was synthesized. The investigated systems contain the benzotriazinyl radical 1 coordinated to a divalent metal cation, MnII, FeII, CoII, or NiII, with 1,1,1,5,5,5-hexafluoroacetylacetonato (hfac) as the auxiliary ligand of choice. The synthesized complexes were fully characterized by single-crystal X-ray diffraction, magnetic susceptibility measurements, and electronic structure calculations. The complexes [Mn(1)(hfac)2] and [Fe(1)(hfac)2] displayed antiferromagnetic coupling between the unpaired electrons of the ligand and the meta…
Coexistence of long-range antiferromagnetic order and slow relaxation of the magnetization in the first lanthanide complex of a 1,2,4-benzotriazinyl radical
The first lanthanide complex of a 1,2,4-benzotriazinyl radical (1), Dy(1)(tbacac)3 (2, tbacac = 2,2,6,6-tetramethyl-3,5-heptane-dionato), was synthesised and found to have an antiferromagnetically ordered ground state with a metamagnetic phase diagram and a critical field of 0.91 T at 1.85 K. The application of a small dc field revealed the single-molecule magnet behaviour of 2, illustrating the coexistence of long-range antiferromagnetic order and slow relaxation of the magnetization. peerReviewed
Non-Innocent Base Properties of 3- and 4-Pyridyl-dithia- and Diselenadiazolyl Radicals : The Effect of N-Methylation
International audience; Condensation of persilylated nicotinimideamide and isonicotinimideamide with sulfur monochloride affords double salts of the 3-, 4-pyridyl-substituted 1,2,3,5-dithiadiazolylium DTDA cations of the general formula [3-, 4-pyDTDA][Cl][HCl] in which the pyridyl nitrogen serves as a noninnocent base. Reduction of these salts with triphenylantimony followed by deprotonation of the intermediate-protonated radical affords the free base radicals [3-, 4-pyDTDA], the crystal structures of which, along with those of their diselenadiazolyl analogues [3-, 4-pyDSDA], have been characterized by powder or single-crystal X-ray diffraction. The crystal structures consist of “pancake” π…
Synthesis, structural and magnetic characterizations of new complexes of di-2,6-(2-pyridylcarbonyl)pyridine (pyCOpyCOpy) ligand
International audience; Using the di-2,6-(2-pyridylcarbonyl)pyridine ligand (L1) as starting framework, five new mononuclear complexes were obtained: [Cu(L1)(MeCN)(ClO4)2] (1) [Co(L1)(MeCN)(Br)2]*MeCN (2), [Fe(L1)2](BF4)2*MeOH*H2O (3), [Cr(L2a)Cl2]*2MeOH (where HL2a is (6-(hydroxyl(methoxy)(pyridin-2-yl)methyl)pyridin-2-yl)(pyridin-2-yl)methanone) (4) and one trinuclear [NiII3] complex, [Ni3(L2b)2(Bz)2(EtOH)2](ClO4)2*2EtOH (where HL2b is (6-(hydroxyl(ethoxy)(pyridin-2-yl)methyl)pyridin-2-yl)(pyridin-2-yl)methanone; Bz = benzoato) (5). Their structural and magnetic characterizations are herein reported. All the metal ions show octahedral coordination geometry, which is slightly unusual for t…
Slow Dynamics of the Magnetization in One-Dimensional Coordination Polymers: Single-Chain Magnets
18 pages; International audience; Slow relaxation of the magnetization (i.e., "magnet-like" behavior) in materials composed of magnetically isolated chains was observed for the first time in 2001. This type of behavior was predicted in the 1960s by Glauber in a chain of ferromagnetically coupled Ising spins (the so-called Glauber dynamics). In 2002, this new class of nanomagnets was named single-chain magnets (SCMs) by analogy to single-molecule magnets that are isolated molecules displaying related superparamagnetic properties. A long-range order occurs only at T = 0 K in any pure one-dimensional (1D) system, and thus such systems remain in their paramagnetic state at any finite temperatur…
Metal-organic magnets with large coercivity and ordering temperatures up to 242°C.
International audience; Magnets derived from inorganic materials (e.g., oxides, rare-earth–based, and intermetallic compounds) are key components of modern technological applications. Despite considerable success in a broad range of applications, these inorganic magnets suffer several drawbacks, including energetically expensive fabrication, limited availability of certain constituent elements, high density, and poor scope for chemical tunability. A promising design strategy for next-generation magnets relies on the versatile coordination chemistry of abundant metal ions and inexpensive organic ligands. Following this approach, we report the general, simple, and efficient synthesis of light…
A Comparative Structural and Magnetic Study of Three Compounds Based on the Cluster Unit M4Cl8(THF)6 (M=Mn, Fe, Co)
Treatment of anhydrous M Cl 2 phases with THF under refluxing conditions leads to excision of the clusters M 4 Cl 8 (THF) 6 ( M =Fe (1), Co (3)) and dimensional reduction to the chain of clusters, {Mn 4 Cl 8 (THF) 6 (Mn(THF) 2 Cl 2 } ∞ , (2). All three compounds were isolated in high yields as crystalline materials and subjected to comprehensive magnetic studies. X-ray structures of the three compounds were performed to verify the nature of the compounds, but only the Mn derivative is discussed in detail due to the fact that the structures of the Fe and Co clusters were reported earlier. The molecular structures of M 4 Cl 8 (THF) 6 ( M =Fe, Co) consist of a rhombic arrrangement of metal ion…
1‑Phenyl-3-(pyrid-2-yl)benzo[e][1,2,4]triazinyl: The First "Blatter Radical" for Coordination Chemistry
A neutral air- and moisture-stable N,N′-chelating radical ligand, 1-phenyl-3-(pyrid-2-yl)benzo[e][1,2,4]triazinyl (1) was synthesized and characterized by electron paramagnetic resonance spectroscopy, X-ray crystallography, and magnetic measurements. Subsequent reaction of 1 with Cu(hfac)2·2H2O (hfac = hexafluoroacetylacetonate) under ambient conditions afforded the coordination complex Cu(1)(hfac)2 in which the radical binds to the metal in a bidentate fashion. Magnetic susceptibility data collected from 1.8 to 300 K indicate a strong ferromagnetic metal-radical interaction in the complex and weak antiferromagnetic radical···radical interactions between the Cu(1)(hfac)2 units. Detailed com…
CCDC 1057508: Experimental Crystal Structure Determination
Related Article: Ian S. Morgan, Akseli Mansikkamäki, Georgia A. Zissimou, Panayiotis A. Koutentis, Mathieu Rouzières, Rodolphe Clérac and Heikki M. Tuononen|2015|Chem.-Eur.J.|21|15843|doi:10.1002/chem.201501343
CCDC 1863396: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Joanne W. L. Wong, Kristina Lekin, Abdeljalil Assoud, Craig M. Robertson, Manu Lahtinen, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman, Richard T. Oakley|2018|Inorg.Chem.|57|13901|doi:10.1021/acs.inorgchem.8b02416
CCDC 2098810: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Joanne W. L. Wong, Kristina Lekin, Abdeljalil Assoud, Craig M. Robertson, Manu Lahtinen, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman, Richard T. Oakley|2018|Inorg.Chem.|57|13901|doi:10.1021/acs.inorgchem.8b02416
CCDC 1057512: Experimental Crystal Structure Determination
Related Article: Ian S. Morgan, Akseli Mansikkamäki, Georgia A. Zissimou, Panayiotis A. Koutentis, Mathieu Rouzières, Rodolphe Clérac and Heikki M. Tuononen|2015|Chem.-Eur.J.|21|15843|doi:10.1002/chem.201501343
CCDC 2098809: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Joanne W. L. Wong, Kristina Lekin, Abdeljalil Assoud, Craig M. Robertson, Manu Lahtinen, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman, Richard T. Oakley|2018|Inorg.Chem.|57|13901|doi:10.1021/acs.inorgchem.8b02416
CCDC 1863394: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Joanne W. L. Wong, Kristina Lekin, Abdeljalil Assoud, Craig M. Robertson, Manu Lahtinen, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman, Richard T. Oakley|2018|Inorg.Chem.|57|13901|doi:10.1021/acs.inorgchem.8b02416
CCDC 1983877: Experimental Crystal Structure Determination
Related Article: Panagiota Perlepe, Itziar Oyarzabal, Aaron Mailman, Morgane Yquel, Mikhail Platunov, Iurii Dovgaliuk, Mathieu Rouzières, Philippe Négrier, Denise Mondieig, Elizaveta A. Suturina, Marie-Anne Dourges, Sébastien Bonhommeau, Rebecca A. Musgrave, Kasper S. Pedersen, Dmitry Chernyshov, Fabrice Wilhelm, Andrei Rogalev, Corine Mathonière, Rodolphe Clérac|2020|Science|6516|587|doi:10.1126/science.abb3861
CCDC 1863392: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Joanne W. L. Wong, Kristina Lekin, Abdeljalil Assoud, Craig M. Robertson, Manu Lahtinen, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman, Richard T. Oakley|2018|Inorg.Chem.|57|13901|doi:10.1021/acs.inorgchem.8b02416
CCDC 1863395: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Joanne W. L. Wong, Kristina Lekin, Abdeljalil Assoud, Craig M. Robertson, Manu Lahtinen, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman, Richard T. Oakley|2018|Inorg.Chem.|57|13901|doi:10.1021/acs.inorgchem.8b02416
CCDC 1955680: Experimental Crystal Structure Determination
Related Article: Christos P. Constantinides, Daniel B. Lawson, Georgia A. Zissimou, Andrey A. Berezin, Aaron Mailman, Maria Manoli, Andreas Kourtellaris, Gregory M. Leitus, Rodolphe Clérac, Heikki M. Tuononen, Panayiotis A. Koutentis|2020|CrystEngComm|22|5453|doi:10.1039/D0CE00789G
CCDC 1863398: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Joanne W. L. Wong, Kristina Lekin, Abdeljalil Assoud, Craig M. Robertson, Manu Lahtinen, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman, Richard T. Oakley|2018|Inorg.Chem.|57|13901|doi:10.1021/acs.inorgchem.8b02416
CCDC 1057511: Experimental Crystal Structure Determination
Related Article: Ian S. Morgan, Akseli Mansikkamäki, Georgia A. Zissimou, Panayiotis A. Koutentis, Mathieu Rouzières, Rodolphe Clérac and Heikki M. Tuononen|2015|Chem.-Eur.J.|21|15843|doi:10.1002/chem.201501343
CCDC 1057510: Experimental Crystal Structure Determination
Related Article: Ian S. Morgan, Akseli Mansikkamäki, Georgia A. Zissimou, Panayiotis A. Koutentis, Mathieu Rouzières, Rodolphe Clérac and Heikki M. Tuononen|2015|Chem.-Eur.J.|21|15843|doi:10.1002/chem.201501343
CCDC 1057507: Experimental Crystal Structure Determination
Related Article: Ian S. Morgan, Akseli Mansikkamäki, Georgia A. Zissimou, Panayiotis A. Koutentis, Mathieu Rouzières, Rodolphe Clérac and Heikki M. Tuononen|2015|Chem.-Eur.J.|21|15843|doi:10.1002/chem.201501343
CCDC 1863393: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Joanne W. L. Wong, Kristina Lekin, Abdeljalil Assoud, Craig M. Robertson, Manu Lahtinen, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman, Richard T. Oakley|2018|Inorg.Chem.|57|13901|doi:10.1021/acs.inorgchem.8b02416
CCDC 1955684: Experimental Crystal Structure Determination
Related Article: Christos P. Constantinides, Daniel B. Lawson, Georgia A. Zissimou, Andrey A. Berezin, Aaron Mailman, Maria Manoli, Andreas Kourtellaris, Gregory M. Leitus, Rodolphe Clérac, Heikki M. Tuononen, Panayiotis A. Koutentis|2020|CrystEngComm|22|5453|doi:10.1039/D0CE00789G
CCDC 1863397: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Joanne W. L. Wong, Kristina Lekin, Abdeljalil Assoud, Craig M. Robertson, Manu Lahtinen, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman, Richard T. Oakley|2018|Inorg.Chem.|57|13901|doi:10.1021/acs.inorgchem.8b02416
CCDC 1057506: Experimental Crystal Structure Determination
Related Article: Ian S. Morgan, Akseli Mansikkamäki, Georgia A. Zissimou, Panayiotis A. Koutentis, Mathieu Rouzières, Rodolphe Clérac and Heikki M. Tuononen|2015|Chem.-Eur.J.|21|15843|doi:10.1002/chem.201501343
CCDC 2007863: Experimental Crystal Structure Determination
Related Article: Panagiota Perlepe, Itziar Oyarzabal, Aaron Mailman, Morgane Yquel, Mikhail Platunov, Iurii Dovgaliuk, Mathieu Rouzières, Philippe Négrier, Denise Mondieig, Elizaveta A. Suturina, Marie-Anne Dourges, Sébastien Bonhommeau, Rebecca A. Musgrave, Kasper S. Pedersen, Dmitry Chernyshov, Fabrice Wilhelm, Andrei Rogalev, Corine Mathonière, Rodolphe Clérac|2020|Science|6516|587|doi:10.1126/science.abb3861
CCDC 1863391: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Joanne W. L. Wong, Kristina Lekin, Abdeljalil Assoud, Craig M. Robertson, Manu Lahtinen, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman, Richard T. Oakley|2018|Inorg.Chem.|57|13901|doi:10.1021/acs.inorgchem.8b02416
CCDC 1563199: Experimental Crystal Structure Determination
Related Article: Ian S. Morgan, Akseli Mansikkamäki, Mathieu Rouzières, Rodolphe Clérac, Heikki M. Tuononen|2017|Dalton Trans.|46|12790|doi:10.1039/C7DT02766D
CCDC 1057509: Experimental Crystal Structure Determination
Related Article: Ian S. Morgan, Akseli Mansikkamäki, Georgia A. Zissimou, Panayiotis A. Koutentis, Mathieu Rouzières, Rodolphe Clérac and Heikki M. Tuononen|2015|Chem.-Eur.J.|21|15843|doi:10.1002/chem.201501343