6533b861fe1ef96bd12c4458

RESEARCH PRODUCT

Metal-organic magnets with large coercivity and ordering temperatures up to 242°C.

Mathieu RouzièresCorine MathonièrePanagiota S. PerlepeM.s. PlatunovRodolphe CléracDmitry ChernyshovItziar OyarzabalItziar OyarzabalPhilippe NégrierAndrei RogalevRebecca A. MusgraveMarie-anne DourgesElizaveta A. SuturinaDenise MondieigAaron MailmanIurii DovgaliukFabrice WilhelmKasper S. PedersenKasper S. PedersenMorgane YquelSébastien Bonhommeau

subject

FabricationMaterials sciencemagneettiset ominaisuudetPyrazineMetal ions in aqueous solutionmagneetitIntermetallicNanotechnology02 engineering and technologyorganometalliyhdisteet010402 general chemistrylarge coercivity7. Clean energy01 natural sciencesordering temperaturesCoordination complexchemistry.chemical_compoundMoleculechemistry.chemical_classificationMultidisciplinarymetal-organic magnets[CHIM.MATE]Chemical Sciences/Material chemistrykompleksiyhdisteetCoercivity021001 nanoscience & nanotechnologykiteet0104 chemical scienceschemistryMagnetlämpötila0210 nano-technology

description

International audience; Magnets derived from inorganic materials (e.g., oxides, rare-earth–based, and intermetallic compounds) are key components of modern technological applications. Despite considerable success in a broad range of applications, these inorganic magnets suffer several drawbacks, including energetically expensive fabrication, limited availability of certain constituent elements, high density, and poor scope for chemical tunability. A promising design strategy for next-generation magnets relies on the versatile coordination chemistry of abundant metal ions and inexpensive organic ligands. Following this approach, we report the general, simple, and efficient synthesis of lightweight, molecule-based magnets by postsynthetic reduction of preassembled coordination networks that incorporate chromium metal ions and pyrazine building blocks. The resulting metal-organic ferrimagnets feature critical temperatures up to 242°C and a 7500-oersted room-temperature coercivity.

10.1126/science.abb3861https://pubmed.ncbi.nlm.nih.gov/33122382