0000000001301986

AUTHOR

Adam Langlois

showing 16 related works from this author

The first example of cofacial bis(dipyrrins)

2016

International audience; Two series of cofacial bis(dipyrrins) were prepared and their photophysical properties as well as their bimolecular fluorescence quenching with C-60 were investigated. DFT and TDDFT computations were also performed as a modeling tool to address the nature of the fluorescence state and the possible inter-chromophore interactions. Clearly, there is no evidence for such interactions and the bimolecular quenching of fluorescence, in comparison with mono-dipyrrins, indicates that C-60-bis(dipyrrin) contacts occur from the outside of the "mouth" of the cofacial structure.

010402 general chemistryPhotochemistry01 natural sciences[ CHIM ] Chemical SciencesCatalysisTransition metalexcitation-energiesmolecular-orbital methodsorganometallic compoundsMaterials Chemistry[CHIM]Chemical Sciencessinglet energy transfersdensity-functional theoryvalence basis-setsGroup 2 organometallic chemistryQuenching (fluorescence)010405 organic chemistryChemistryGeneral ChemistryTime-dependent density functional theorytransition-metalsFluorescence0104 chemical scienceslight-harvesting systems2nd-row elementsDensity functional theoryextended basis-sets
researchProduct

Evidence for reverse pathways and equilibrium in singlet energy transfers between an artificial special pair and an antenna

2013

A dyad, 1, built on an artificial special pair (bis(meso-nonyl)zinc(II)porphyrin), [Zn2], a spacer (biphenylene), a bridge (1,4-benzene), and an antenna (di-meso-(3,5-di(t-butyl)phenyl)porphyrin free base), FB, is prepared by Suzuki coupling and is analyzed by absorption and steady state, and time-resolved emission spectroscopy at 298 and 77 K. Using bases from the Förster theory, evidence for two pathways for S 1 energy transfer, FB* → [Zn2], and [Zn2]* → FB, along with their respective rates, k ET ( S 1)1 and k ET ( S 1)-1, are extracted from the comparison of the fluorescence decays monitored at the emission maximum. At 77 K, the unquenched (1.79 ([Zn2]) and 10.6 ns (FB)) and quenched c…

chemistry.chemical_compoundChemistryFree baseGeneral ChemistrySinglet stateEmission spectrumSteady state (chemistry)Atomic physicsBiphenyleneAbsorption (electromagnetic radiation)FluorescencePorphyrinJournal of Porphyrins and Phthalocyanines
researchProduct

Decoupling the artificial special pair to slow down the rate of singlet energy transfer

2012

Trimer 2, composed of a cofacial heterobismacrocycle, octamethyl-porphyrin zinc(II) and bisarylporphyrin zinc(II) held by an anthracenyl spacer, and a flanking acceptor, bisarylporphyrin free-base ( Ar = -3,5-(t Bu )2 C 6 H 3), has been studied by means of absorption spectroscopy, "steady state and time-resolved fluorescence" and fs transient absorption spectroscopy, and density functional theory (DFT) in order to assess the effect of decoupling the chromophores' low energy MOs on the rate of the singlet, S1, energy transfer, k ET , compared to a recently reported work on a heavily coupled trimeric system, Trimer 1, [biphenylenebis(n-nonyl)porphyrin zinc(II)]-bisarylporphyrin free-base ( A…

CrystallographyAbsorption spectroscopyChemistryUltrafast laser spectroscopyTrimerDensity functional theoryGeneral ChemistrySinglet stateChromophoreAbsorption (electromagnetic radiation)PhotochemistryAcceptorJournal of Porphyrins and Phthalocyanines
researchProduct

Modular P-Chirogenic Phosphine-Sulfide Ligands: Clear Evidence for Both Electronic Effect and P-Chirality Driving Enantioselectivity in Palladium-Cat…

2015

Using the ephedrine methodology, modular stereoselective syntheses of a new class of P-chirogenic phosphines bearing a sulfur-chelating arm (P*,S-hybrid ligand) are described. A first series of syntheses based on a Fries-like rearrangement of P-chirogenic phosphinite-boranes, which are prepared from 2-bromobenzyl or 2-bromophenethyl alcohol and are mediated by metal–halide exchange, have been performed. This rearrangement affords phosphine-boranes stereospecifically with an o-hydroxyalkylphenyl substituent. The latter residue is subsequently converted into a sulfur-containing group. In a second series, the stereoselective syntheses were achieved according to a new strategy involving a react…

Allylic rearrangementPhosphinite010405 organic chemistryLigandStereochemistryOrganic ChemistrySubstituentAbsolute configurationchemistry.chemical_element010402 general chemistry01 natural sciences0104 chemical sciencesInorganic Chemistrychemistry.chemical_compoundchemistryElectronic effectPhysical and Theoretical ChemistryPhosphinePalladiumOrganometallics
researchProduct

Cyclotriveratrylene-Containing Porphyrins

2016

International audience; The C-3-symmetric cyclotriveratrylene (CTV) was covalently bonded via click chemistry to 1, 2, 3, and 6 zinc(II) porphyrin units to various host for C-60. The binding constants, Ka, were measured from the quenching of the porphyrin fluorescence by C-60. These constants vary between 400 and 4000 M-1 and are considered weak. Computer modeling demonstrated that the zinc(II) porphyrin units, [Zn], exhibit a strong tendency to occupy the CTV cavity, hence blocking the access for C-60 to land on this site. Instead, the pincer of the type [Zn]-[Zn] and in one case [Zn]-CTV, were found to be the most probable geometry to promote host-guest associations in these systems.

cagesStereochemistrychemistry.chemical_elementCyclotriveratryleneZinc010402 general chemistry01 natural sciences[ CHIM ] Chemical Sciencessupramolecular chemistrydendrimersInorganic Chemistrychemistry.chemical_compoundc-60[CHIM]Chemical SciencesmoleculesctvPhysical and Theoretical Chemistryinclusion complexesQuenching (fluorescence)010405 organic chemistryfullereneFluorescencePorphyrin0104 chemical sciencesPincer movementCrystallographychemistryCovalent bondClick chemistryderivativeshosts
researchProduct

Very fast singlet and triplet energy transfers in a tri-chromophoric porphyrin dyad aided by the truxene platform

2015

A trichromophoric dyad composed of an octa-β-alkyl-palladium(II)porphyrin (donor) and two tri-meso-aryl-zinc(II)porphyrins (acceptors) held by a truxene spacer exhibits very fast rates for triplet energy transfers at 77 (kET(T1) = 1.63 × 108 s-1) and 298 K (kET(T1) = 3.44 × 108 s-1), whereas the corresponding singlet energy transfer rates, kET(S1) = 3.9 × 1010 s-1 (77 K) and kET(S1) = 6.0 × 1010 s-1 (298 K), are also considered fast. The interpretation for these results is that the energy transfer processes proceed via a through bond Dexter mechanism (i.e. double electron exchange) supported by comparison with literature data and evidence for a moderate MO coupling between the donor and ac…

chemistry.chemical_compoundChemistryEnergy transferElectron exchangeGeneral ChemistrySinglet stateChromophorePhotochemistryAcceptorPorphyrinJournal of Porphyrins and Phthalocyanines
researchProduct

Excited State N−H Tautomer Selectivity in the Singlet Energy Transfer of a Zinc(II)-Porphyrin-Truxene-Corrole Assembly

2017

International audience; An original corrole-containing polyad for S-1 energy transfer, in which one zinc(II)-porphyrin donor is linked to two free-base corrole acceptors by a truxene linker, is reported. This polyad exhibits a rapid zinc(II)-porphyrin*free-base corrole transfer (4.83x10(10)s(-1); 298K), even faster than the tautomerization in the excited state processes taking advantage of the good electronic communication provided by the truxene bridge. Importantly, the energy transfer process shows approximately 3-fold selectivity for one corrole N-H tautomer over the other even at low temperature (77K). This selectivity is due to the difference in the J-integral being effective in both t…

chemistry.chemical_elementDexter energy transferZinccore-modified corroles010402 general chemistryPhotochemistry7. Clean energy01 natural sciencesmain-group elements[ CHIM ] Chemical SciencesCatalysisfree-base corroleschemistry.chemical_compoundmolecular-orbital methods[CHIM]Chemical SciencesSinglet stateCorrolecorrolesdensity-functional theoryvalence basis-setsphotophysical propertiestautomerization010405 organic chemistrytruxenesensitized solar-cellsOrganic ChemistryGeneral ChemistryTautomerPorphyrin0104 chemical scienceschemistrymesosubstituted corrolesExcited stateFRETextended basis-setsSelectivityLinker
researchProduct

Is the special pair structure a good strategy for the kinetics during the last step of the energy transfer with the nearest antenna? A chemical model…

2013

A cofacial bis(Mg(II)porphyrin)-C(6)H(4)-free base ([Mg(2)]-bridge-FB) dyad shows S(1) energy transfer in both directions and much slower rates than similar monoporphyrin systems are observed.

Molecular StructureMetalloporphyrinsEnergy transferKineticsMetals and AlloysStructure (category theory)General ChemistryPorphyrinMolecular physicsCatalysisSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsBase (group theory)chemistry.chemical_compoundKineticsZincchemistryEnergy TransferModels ChemicalComputational chemistryMaterials ChemistryCeramics and CompositesMoleculeMagnesiumAntenna (radio)Chemical communications (Cambridge, England)
researchProduct

Antenna effects in truxene-bridged BODIPY triarylzinc(ii)porphyrin dyads: evidence for a dual Dexter–Förster mechanism

2014

The antenna process from an energy donor (BODIPY; 4′,4′-difluoro-1′,3′,5′,7′-tetramethyl-4′-bora-3a′,4a′-diaza-s-indacene) in its singlet state to two acceptors (two zinc(II) 5,15-p-tolyl-10-phenylporphyrin) bridged by a central truxene residue (5′,5′′,10′,10′′,15′,15′′-hexabutyltruxene), 5, has been analysed by means of comparison of the energy transfer rates with those of a structurally similar β-substituted BODIPY-(zinc(II) 5,10,15-p-tolyl-porphyrin), 6, where no conjugation is present between the donor and the two acceptors using the Forster resonance energy transfer (FRET) approximation. It is estimated that the energy transfer in 5 operates mostly via a Dexter mechanism (>99%), and th…

Inorganic Chemistrychemistry.chemical_compoundFörster resonance energy transferChemistryEnergy transferchemistry.chemical_elementSinglet stateZincBODIPYPhotochemistryPorphyrinDalton Trans.
researchProduct

Metal Dependence on the Bidirectionality and Reversibility of the Singlet Energy Transfer in Artificial Special Pair-Containing Dyads

2017

International audience; The demetalation of a precursor dyad, 3, built upon a zinc(II)-containing artificial special pair and free-base antenna, leads to a new dyad, 4, for singlet energy transfer composed of cofacial free-base porphyrins (acceptor), [Fb](2) bridged by a 1,4-C6H4 group to a free-base antenna (donor), [Fb]. This dyad exhibits the general structure [M](2)-C6H4-[Fb], where [M](2) = [Fh](2), and completes a series reported earlier, where [M](2) = [Mg](2) (2) and [Zn](2) (3). The latter dyads exhibit a bidirectional energy-transfer process at 298 K for 2 and at 77 K for 3. Interestingly, a very scarce case of cycling process is observed for the zinc-containing dyad at 298 K. The…

cofacial bisporphyrin dyadsStereochemistryEnergy transferchemistry.chemical_elementZinc[CHIM.INOR]Chemical Sciences/Inorganic chemistry010402 general chemistry01 natural sciencesphotoinduced electron-transferInorganic ChemistryMetalmolecular-orbital methodsMolecular orbitalSinglet statePhysical and Theoretical Chemistryphotosynthetic reaction-centerdensity-functional theoryvalence basis-setsbase hybrid diporphyrins010405 organic chemistry[ CHIM.INOR ] Chemical Sciences/Inorganic chemistryResonance (chemistry)Acceptor0104 chemical sciencesCrystallographychemistrylight-harvesting systemsvisual_artpolarizable continuum modelvisual_art.visual_art_mediumDensity functional theoryextended basis-sets
researchProduct

Origin of the temperature dependence of the rate of singlet energy transfer in a three-component truxene-bridged dyads

2014

We report a truxene-based dyad built upon one donor (tri-meso-phenylzinc(II)porphyrin) and two acceptors (octa-β-alkylporphyrin free base) in which the donor exhibits free rotation around a Ctruxene-Cmeso single bond at 298 K in fluid solution but not at 77 K in a glass matrix, whereas the acceptors have very limited motion as they are blocked by β-methyl groups. This case is interesting because all the structural and spectroscopic parameters affecting the rate for singlet energy transfer according to a Förster Resonance Energy Transfer are only weakly temperature dependent, leaving only the Dexter mechanism explaining the larger variation in rate of energy transfers with the temperature h…

chemistry.chemical_compoundFluid solutionFörster resonance energy transferchemistryChemical physicsExcited stateFree baseSingle bondGeneral ChemistrySinglet statePhotochemistryPorphyrinFluorescenceJournal of Porphyrins and Phthalocyanines
researchProduct

Slow and Fast Singlet Energy Transfers in BODIPY-gallium(III)corrole Dyads Linked by Flexible Chains

2014

Red (no styryl), green (monostyryl), and blue (distyryl) BODIPY-gallium(III) (BODIPY = boron-dipyrromethene) corrole dyads have been prepared in high yields using click chemistry, and their photophysical properties are reported. An original and efficient control of the direction of the singlet energy transfers is reported, going either from BODIPY to the gallium-corrole units or from gallium-corroles to BODIPY, depending upon the nature of the substitution on BODIPY. In one case (green), both directions are possible. The mechanism for the energy transfers is interpreted by means of through-space Förster resonance energy transfer (FRET).

Inorganic Chemistrychemistry.chemical_compoundFörster resonance energy transferChemistryEnergy transferClick chemistrychemistry.chemical_elementSinglet statePhysical and Theoretical ChemistryBODIPYGalliumCorrolePhotochemistryInorganic Chemistry
researchProduct

CCDC 1429795: Experimental Crystal Structure Determination

2015

Related Article: Jérôme Bayardon, Milène Maronnat, Adam Langlois, Yoann Rousselin, Pierre D. Harvey and Sylvain Jugé|2015|Organometallics|34|4340|doi:10.1021/acs.organomet.5b00585

(2-((t-butylsulfanyl)methyl)phenyl)(2-methoxyphenyl)phenylphosphineSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1429794: Experimental Crystal Structure Determination

2015

Related Article: Jérôme Bayardon, Milène Maronnat, Adam Langlois, Yoann Rousselin, Pierre D. Harvey and Sylvain Jugé|2015|Organometallics|34|4340|doi:10.1021/acs.organomet.5b00585

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(2-((ethylsulfanyl)methyl)phenyl)(2-methoxyphenyl)phenylphosphineExperimental 3D Coordinates
researchProduct

CCDC 1429796: Experimental Crystal Structure Determination

2015

Related Article: Jérôme Bayardon, Milène Maronnat, Adam Langlois, Yoann Rousselin, Pierre D. Harvey and Sylvain Jugé|2015|Organometallics|34|4340|doi:10.1021/acs.organomet.5b00585

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersdichloro-((2-methoxyphenyl)(phenyl)(2-((phenylsulfanyl)methyl)phenyl)phosphine)-palladium(ii) dichloromethane solvateExperimental 3D Coordinates
researchProduct

CCDC 1429797: Experimental Crystal Structure Determination

2015

Related Article: Jérôme Bayardon, Milène Maronnat, Adam Langlois, Yoann Rousselin, Pierre D. Harvey and Sylvain Jugé|2015|Organometallics|34|4340|doi:10.1021/acs.organomet.5b00585

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersdichloro-((2-methoxyphenyl)(phenyl)(2-(phenylsulfanyl)phenyl)phosphine)-palladium(ii) dichloromethane solvateExperimental 3D Coordinates
researchProduct