0000000001302103
AUTHOR
Antti J. Karttunen
Structural Principles and Thermoelectric Properties of Polytypic Group 14 Clathrate-II Frameworks
We have investigated the structural principles and thermoelectric properties of polytypic group 14 clathrate-II frameworks using quantum chemical methods. The experimentally known cubic 3C polytype was found to be the energetically most favorable framework, but the studied hexagonal polytypes (2 H, 4 H, 6 H, 8 H, 10 H) lie energetically close to it. In the case of germanium, the energy difference between the 3C and 6H clathrate-II polytypes is ten times smaller than the difference between the experimentally known 3C-Ge (α-Ge) and 4H-Ge polytypes. The thermoelectric properties of guest-occupied clathrate-II structures were investigated for compositions Na-Rb-Ga-Ge and Ge-As-I. The clathrate-…
Harnessing Fluorescence versus Phosphorescence Branching Ratio in (Phenyl)n-Bridged (n = 0–5) Bimetallic Au(I) Complexes
We have designed and synthesized a series of Au(I) complexes bearing either an alkynyl–(phenylene)n–diphosphine (A-0–A-3) or a (phenylene)n–diphosphine (B-1–B-5) bridge, among which the effective distance between Au(I) and the center of the emitting ππ* chromophore can be fine-tuned via the insertion of various numbers of phenylene spacers. We then demonstrated for the first time in a systematic manner the decrease of rate constant for S1 → T1 intersystem crossing (ISC) kisc as the increase of the effective distance. The results also unambiguously showed that the phosphorescence could be harvested via higher S0 → Sn (n > 1) electronic excitation, followed by fast Sn → Tm ISC and then the po…
Synthesis, electrochemical and theoretical studies of the Au(i)-Cu(i) heterometallic clusters bearing ferrocenyl groups
Treatment of the polymeric alkynyl compounds (AuC2R)n (R = Fc, C6H4Fc; Fc = ferrocenyl) with the diphosphine PPh2C6H4PPh2 gave complexes (RC2Au)PPh2C6H4PPh2(AuC2R) (1, R = Fc; 2, R = C6H4Fc) with end-capped ferrocenyl groups. The reactions of 1 or 2 with Cu(NCMe)4PF6 result in formation of the heterotrimetallic aggregates [{Au3Cu2(C2R)6}Au3(PPh2C6H4PPh2)3](PF6)2 (3, R = Fc; 4, R = C6H4Fc), which consist of the alkynyl clusters [Au3Cu2(C2R)6]−“wrapped” by the cationic [Au3(PPh2C6H4PPh2)3]3+“belt”. The novel compounds were characterized by NMR spectroscopy and ESI-MS measurements. The solid state structure of 3 is reported. Electrochemical properties of the complexes 1–4 have been studied. Th…
Sky-Blue Luminescent Au(I)-Ag(I) Alkynyl-Phosphine Clusters
Treatment of the (AuC2R)n acetylides with phosphine ligand 1,4-bis(diphenylphosphino)butane (PbuP) and Ag(+) ions results in self-assembly of the heterobimetallic clusters of three structural types depending on the nature of the alkynyl group. The hexadecanuclear complex [Au12Ag4(C2R)12(PbuP)6](4+) (1) is formed for R = Ph, and the octanuclear species [Au6Ag2(C2R)6(PbuP)3](2+) adopting two structural arrangements in the solid state were found for the aliphatic alkynes (R = Bu(t) (2), 2-propanolyl (3), 1-cyclohexanolyl (4), diphenylmethanolyl (5), 2-borneolyl (6)). The structures of the compounds 1-4 and 6 were determined by single crystal X-ray diffraction analysis. The NMR spectroscopic st…
The Nature of Transannular Interactions in E4N4 and E82+ (E = S, Se)
The electronic structures of tetrachalcogen tetranitrides, E4N4, and octachalcogen dications, E8(2+), and the nature of their intramolecular E···E interactions (E = S, Se) was studied with high-level theoretical methods. The results reveal that the singlet ground states of both systems have a surprisingly large correlation contribution which functions to weaken and therefore lengthen the cross-ring E-E bond. The observed correlation effects are primarily static in E4N4, whereas in E8(2+) the dynamic part largely governs the total correlation contribution. The presented description of bonding is the first that gives an all-inclusive picture of the origin of cross-ring interactions in E4N4 an…
Solid-state luminescence of Au-Cu-alkynyl complexes induced by metallophilicity-driven aggregation.
A new series of homoleptic alkynyl complexes, [{Au2Cu2(C2R)4}n] (R=C3H7O (1), C6H11O (2), C9H19O (3), C13H11O (4)), were obtained from Au(SC4H8)Cl, Cu(NCMe)4PF6, and the corresponding alkyne in the presence of a base (NEt3). Complexes 1-4 aggregate upon crystallization into polymeric chains through extensive metallophilic interactions. The cluster that contains fluorenolyl functionalities, C13H9O (5), crystallizes in its molecular form as a disolvate, [Au2Cu2(C2C13H9O)4]·2THF. The substitution of weakly bound THF molecules with pyridine molecules leads to the complex [Au2Cu2(C2C13H9O)4]·2py (6), thus giving two polymorphs in the solid state. Such structural diversity is established through …
Triphosphine-supported bimetallic Au(I)-M(I) (M = Ag, Cu) alkynyl clusters.
The reactions of gold acetylides (AuC2R)n with triphosphine ligands PPh2-(CH2)n-PPh-(CH2)2-PPh2 (n = 1, dpmp; 2, dpep) in the presence of M(+) ions (M = Cu, Ag) lead to an assembly of the heterometallic clusters, the composition of which is determined by the steric bulkiness of the alkynyl groups and the flexibility of the phosphine motifs. For R = Ph, an unprecedented hexanuclear complex [Au5Cu(C2R)4(dpmp)2](2+) (1) was isolated, while for the aliphatic alkynes (R = 1-cyclohexanolyl, 2-borneolyl, 2,6-dimethyl-4-heptanolyl) a family of compounds based on a tetrametallic framework was prepared, [Au3Cu(C2R)3(dpmp)](+) (2, R = 1-cyclohexanolyl), [Au3M(C2R)3(dpep)]2(+2) (3, M = Cu, R = 1-cycloh…
Determination of Individual Gibbs Energies of Anion Transfer and Excess Gibbs Energies Using an Electrochemical Method Based on Insertion Electrochemistry of Solid Compounds
A method is presented to determine, individually and with minimal extra-thermodynamic assumptions, the Gibbs energy for anion transfer between two solvents using solid state electrochemistry of alkynyldiphosphine dinuclear Au(I) complexes (AuC2R)2PPh2C6H4PPh2 (L1, R = Fc; L2, R = C6H4Fc) and the heterometallic Au(I)–Cu(I) [{Au3Cu2(C2R)6}Au3(PPh2C6H4PPh2)3](PF6)2 (L3, R = Fc; L4, R = C6H4Fc) cluster complexes containing ferrocenyl units. These compounds exhibit a well-defined, essentially reversible solid-state oxidation in contact with different electrolytes, based on ferrocenyl-centered oxidation processes involving anion insertion. Voltammetric data can be used for a direct measurement of…
Harvesting Fluorescence from Efficient Tk -> Sj (j, k > 1) Reverse Intersystem Crossing for ??* Emissive Transition-Metal Complexes
Using a bimetallic Au(I) complex bearing alkynyl-(phenylene)3-diphosphine ligand (A-3), we demonstrate that the fluorescence can be exquisitely harvested upon T1 → Tk (k > 1) excitation followed by Tk → Sj (j, k > 1) intersystem crossing (ISC) back to the S1 state. Upon S0 → S1 355 nm excitation, the S1 → T1 intersystem crossing rate has been determined to be 8.9 × 108 s–1. Subsequently, in a two-step laser pump–probe experiment, following a 355 nm laser excitation, the 532 nm T1 → Tk probing gives the prominent blue 375 nm fluorescence, and this time-dependent pump–probe signal correlates well with the lifetime of the T1 state. Careful examination reveals the efficiency of Tk → Sj (j, k > …
"Identification of mixed bromidochloridotellurate anions in disordered crystal structures of (bdmim)2[TeX2Y4] (X, Y = Br, Cl; bdmim = 1-butyl-2,3-dimethylimidazolium) by combined application of Raman spectroscopy and solid-state DFT calculations"
Abstract The discrete mixed [TeBrxCl6−x]2− anions in their disordered crystal structures have been identified by using the phases prepared by the reaction of 1-butyl-2,3-dimethylimidazolium halogenides (bdmim)X with tellurium tetrahalogenides TeX4 (X = Cl, Br) as examples. Homoleptic (bdmim)2[TeX6] [X = Cl (1), Br (2)] and mixed (bdmim)2[TeBr2Cl4] (3), and (bdmim)2[TeBr4Cl2] (4) are formed depending on the choice of the reagents, and their crystal structures have been determined by single-crystal X-ray diffraction. The coordination environments of tellurium in all hexahalogenidotellurates are almost octahedral. Because of the crystallographic disorder, the mixed [TeBr2Cl4]2− and [TeBr4Cl2]2…
Ab initiocomputational study on the lattice thermal conductivity of Zintl clathrates[Si19P4]Cl4andNa4[Al4Si19]
The lattice thermal conductivity of silicon clathrate framework ${\mathrm{Si}}_{23}$ and two Zintl clathrates, $[{\mathrm{Si}}_{19}{\mathrm{P}}_{4}]{\mathrm{Cl}}_{4}$ and ${\mathrm{Na}}_{4}[{\mathrm{Al}}_{4}{\mathrm{Si}}_{19}]$, is investigated by using an iterative solution of the linearized Boltzmann transport equation in conjunction with ab initio lattice dynamical techniques. At 300 K, the lattice thermal conductivities for ${\mathrm{Si}}_{23}, [{\mathrm{Si}}_{19}{\mathrm{P}}_{4}]{\mathrm{Cl}}_{4}$, and ${\mathrm{Na}}_{4}[{\mathrm{Al}}_{4}{\mathrm{Si}}_{19}]$ were found to be 43 W/(m K), 25 W/(m K), and 2 W/(m K), respectively. In the case of ${\mathrm{Na}}_{4}[{\mathrm{Al}}_{4}{\mathrm…
Supramolecular Construction of Cyanide-Bridged Re I Diimine Multichromophores
The reactions of labile [Re(diimine)(CO)3(H2O)]+ precursors (diimine = 2,2′-bipyridine, bpy; 1,10-phenanthroline, phen) with dicyanoargentate anion produce the dirhenium cyanide-bridged compounds [{Re(diimine)(CO)3}2CN)]+ (1 and 2). Substitution of the axial carbonyl ligands in 2 for triphenylphosphine gives the derivative [{Re(phen)(CO)2(PPh3)}2CN]+ (3), while the employment of a neutral metalloligand [Au(PPh3)(CN)] affords heterobimetallic complex [{Re(phen)(CO)3}NCAu(PPh3)]+ (4). Furthermore, the utilization of [Au(CN)2]−, [Pt(CN)4]2–, and [Fe(CN)6]4–/3– cyanometallates leads to the higher nuclearity aggregates [{Re(diimine)(CO)3NC}xM]m+ (M = Au, x = 2, 5 and 6; Pt, x = 4, 7 and 8; Fe, x…
Ambipolar Phosphine Derivatives to Attain True Blue OLEDs with 6.5% EQE
A family of new branched phosphine derivatives {Ph2N-(C6H4)n-}3P → E (E = O 1-3, n = 1-3; E = S 4-6, n = 1-3; E = Se 7-9, n = 1-3; E = AuC6F5 4-6, n = 1-3), which are the donor-acceptor type molecules, exhibit efficient deep blue room temperature fluorescence (λem = 403-483 nm in CH2Cl2 solution, λem = 400-469 nm in the solid state). Fine tuning the emission characteristics can be achieved varying the length of aromatic oligophenylene bridge -(C6H4)n-. The pyramidal geometry of central R3P → E fragment on the one hand disrupts π-conjugation between the branches to preserve blue luminescence and high triplet energy, while on the other hand provides amorphous materials to prevent excimer form…
Ab initio studies on the lattice thermal conductivity of silicon clathrate frameworks II and VIII
The lattice thermal conductivities of silicon clathrate frameworks II and VIII are investigated by using ab initio lattice dynamics and iterative solution of the linearized Boltzmann transport equation(BTE) for phonons. Within the temperature range 100-350 K, the clathrate structures II and VIII were found to have lower lattice thermal conductivity values than silicon diamond structure (d-Si) by factors of 1/2 and 1/5, respectively. The main reason for the lower lattice thermal conductivity of the clathrate structure II in comparison to d-Si was found to be the harmonic phonon spectra, while in the case of the clathrate structure VIII, the difference is mainly due to the harmonic phonon spe…
Ab initio computational study on the lattice thermal conductivity of Zintl clathrates [Si19P4]Cl4 and Na4[Al4Si19]
The lattice thermal conductivity of silicon clathrate framework Si23 and two Zintl clathrates, [Si19P4]Cl4 and Na4[Al4Si19], is investigated by using an iterative solution of the linearized Boltzmann transport equation in conjunction with ab initio lattice dynamical techniques. At 300 K, the lattice thermal conductivities for Si23, [Si19P4]Cl4, and Na4[Al4Si19] were found to be 43 W/(m K), 25 W/(m K), and 2 W/(m K), respectively. In the case of Na4[Al4Si19], the order-of-magnitude reduction in the lattice thermal conductivity was found to be mostly due to relaxation times and group velocities differing from Si23 and [Si19P4]Cl4. The difference in the relaxation times and group velocities ar…
Harnessing Fluorescence versus Phosphorescence Ratio via Ancillary Ligand Fine-Tuned MLCT Contribution
A series of gold(I) alkynyl-diphosphine complexes (XC6H4C2Au)PPh2—spacer—PPh2(AuC2C6H4X); spacer = —C2(C6H4)nC2— (A1, n = 2, X = CF3; A2, n = 2, X = OMe; A3, n = 3, X = CF3; A4, n = 3, X = OMe), —(C6H4)n— (B5, n = 3, X = OMe; B6, n = 4, X = OMe) were prepared, and their photophysical properties were investigated. The luminescence behavior of the titled compounds is dominated by the diphosphine spacer, which serves as an emitting ππ* chromophore. The complexes exhibit dual emission, comprising low and high energy bands of triplet (phosphorescence) and singlet (fluorescence) origins, respectively. The electron-donating characteristics of ancillary groups X significantly affect the LLCT/MLCT c…
[Be(ND 3 ) 4 ]Cl 2 : Synthesis, Characterisation and Space‐Group Determination Guided by Solid‐State Quantum Chemical Calculations
Treatment of BeCl2 with dry liquid ND3 and subsequent removal of the solvent leads to the colourless microcrystalline powder of [Be(ND3)4]Cl2. It crystallises in the orthorhombic space group Pna21 with a = 9.395(4), b = 11.901(6), c = 6.761(3) A, V = 755.9(6) and Z = 4 at 27 °C, and a = 9.3736(8), b = 11.8162(12), c = 6.6596(6) A, V = 737.62(12) and Z = 4 at –269.6 °C. The structure contains the tetrahedral tetraammineberyllium(II) cation which follows the octet rule. It was shown to be stable under ambient conditions and temperatures up to approximately 175 °C. We additionally discuss the aid of solid-state quantum chemical calculations for the assignment of proper crystallographic space g…
Ab initiolattice dynamical studies of silicon clathrate frameworks and their negative thermal expansion
The thermal and lattice dynamical properties of seven silicon clathrate framework structures are investigated with ab initio density functional methods (frameworks I, II, IV, V, VII, VIII, and H). The negative thermal expansion (NTE) phenomenon is investigated by means of quasiharmonic approximation and applying it to equal time displacement correlation functions. The thermal properties of the studied clathrate frameworks, excluding the VII framework, resemble those of the crystalline silicon diamond structure. The clathrate framework VII was found to have anomalous NTE temperature range up to 300 K and it is suitable for further studies of the mechanisms of NTE. Investigation of the displa…
Metallophilicity-assisted assembly of phosphine-based cage molecules.
A family of supramolecular cage molecules has been obtained via self-assembly of the phosphine-gold coordination complexes following an aurophilicity-driven aggregation approach. Use of the di- (PP) or tridentate (PPP) phosphine ligands Pn (n = 2, 3) with rigid polyaromatic backbones leads to clean formation of the coordination Pn(Au(tht))n(n+) species, sequential treatment of which with H2O/NEt3 and excess of H2NBu(t) gives the finite 3D structures of two major types. The cylindrical-like hexametallic cages [(PPAu2)3(μ3-NBu(t))2](2+) are based on the diphosphines PP = 1,4-bis(diphenylphosphino)benzene (1), 4,4'-bis(diphenylphosphino)biphenyl (2), 4,4"-bis(diphenylphosphino)terphenyl (3), w…
Semiconducting Clathrates Meet Gas Hydrates: Xe24[Sn136]
Semiconducting Group 14 clathrates are inorganic host–guest materials with a close structural relationship to gas hydrates. Here we utilize this inherent structural relationship to derive a new class of porous semiconductor materials: noble gas filled Group 14 clathrates (Ngx[M136], Ng=Ar, Kr, Xe and M=Si, Ge, Sn). We have carried out high-level quantum chemical studies using periodic Local-MP2 (LMP2) and dispersion-corrected density functional methods (DFT-B3LYP-D3) to properly describe the dispersive host–guest interactions. The adsorption of noble gas atoms within clathrate-II framework turned out to be energetically clearly favorable for several host–guest systems. For the energetically…
CCDC 916957: Experimental Crystal Structure Determination
Related Article: Igor O. Koshevoy, Yuh-Chia Chang, Antti J. Karttunen, Julia R. Shakirova, Janne Jänis, Matti Haukka, Tapani Pakkanen, Pi-Tai Chou|2013|Chem.-Eur.J.|19|5104|doi:10.1002/chem.201204611
CCDC 916956: Experimental Crystal Structure Determination
Related Article: Igor O. Koshevoy, Yuh-Chia Chang, Antti J. Karttunen, Julia R. Shakirova, Janne Jänis, Matti Haukka, Tapani Pakkanen, Pi-Tai Chou|2013|Chem.-Eur.J.|19|5104|doi:10.1002/chem.201204611
CCDC 962935: Experimental Crystal Structure Determination
Related Article: Ilya S. Krytchankou, Dmitry V. Krupenya, Antti J. Karttunen, Sergey P. Tunik, Tapani A. Pakkanen, Pi-Tai Chou, Igor O. Koshevoy|2014|Dalton Trans.|43|3383|doi:10.1039/C3DT52658E
CCDC 952114: Experimental Crystal Structure Determination
Related Article: Julia R. Shakirova, Elena V. Grachova, Antti J. Karttunen, Vladislav V. Gurzhiy, Sergey P. Tunik, Igor O. Koshevoy|2014|Dalton Trans.|43|6236|doi:10.1039/C3DT53645A
CCDC 1873814: Experimental Crystal Structure Determination
Related Article: Kristina S. Kisel, Alexei S. Melnikov, Elena V. Grachova, Antti J. Karttunen, Antonio Doménech-Carbó, Kirill Yu. Monakhov, Valentin G. Semenov, Sergey P. Tunik, Igor O. Koshevoy|2019|Inorg.Chem.|58|1988|doi:10.1021/acs.inorgchem.8b02974
CCDC 962936: Experimental Crystal Structure Determination
Related Article: Ilya S. Krytchankou, Dmitry V. Krupenya, Antti J. Karttunen, Sergey P. Tunik, Tapani A. Pakkanen, Pi-Tai Chou, Igor O. Koshevoy|2014|Dalton Trans.|43|3383|doi:10.1039/C3DT52658E
CCDC 916958: Experimental Crystal Structure Determination
Related Article: Igor O. Koshevoy, Yuh-Chia Chang, Antti J. Karttunen, Julia R. Shakirova, Janne Jänis, Matti Haukka, Tapani Pakkanen, Pi-Tai Chou|2013|Chem.-Eur.J.|19|5104|doi:10.1002/chem.201204611
CCDC 977750: Experimental Crystal Structure Determination
Related Article: Julia R. Shakirova, Elena V. Grachova, Antti J. Karttunen, Vladislav V. Gurzhiy, Sergey P. Tunik, Igor O. Koshevoy|2014|Dalton Trans.|43|6236|doi:10.1039/C3DT53645A
CCDC 929110: Experimental Crystal Structure Determination
Related Article: Sari M. Närhi, Johanna Kutuniva, Marja K. Lajunen, Manu K. Lahtinen, Heikki M. Tuononen, Antti J. Karttunen, Raija Oilunkaniemi, Risto S. Laitinen|2014|Spectrochim.Acta,Part A|117|728|doi:10.1016/j.saa.2013.09.063
CCDC 916959: Experimental Crystal Structure Determination
Related Article: Igor O. Koshevoy, Yuh-Chia Chang, Antti J. Karttunen, Julia R. Shakirova, Janne Jänis, Matti Haukka, Tapani Pakkanen, Pi-Tai Chou|2013|Chem.-Eur.J.|19|5104|doi:10.1002/chem.201204611
CCDC 916955: Experimental Crystal Structure Determination
Related Article: Igor O. Koshevoy, Yuh-Chia Chang, Antti J. Karttunen, Julia R. Shakirova, Janne Jänis, Matti Haukka, Tapani Pakkanen, Pi-Tai Chou|2013|Chem.-Eur.J.|19|5104|doi:10.1002/chem.201204611
CCDC 962938: Experimental Crystal Structure Determination
Related Article: Ilya S. Krytchankou, Dmitry V. Krupenya, Antti J. Karttunen, Sergey P. Tunik, Tapani A. Pakkanen, Pi-Tai Chou, Igor O. Koshevoy|2014|Dalton Trans.|43|3383|doi:10.1039/C3DT52658E
CCDC 1583379: Experimental Crystal Structure Determination
Related Article: Ilya Kondrasenko, Kun-you Chung, Yi-Ting Chen, Juha Koivistoinen, Elena V. Grachova, Antti J. Karttunen, Pi-Tai Chou, Igor O. Koshevoy|2016|J.Phys.Chem.C|120|12196|doi:10.1021/acs.jpcc.6b03064
CCDC 1873813: Experimental Crystal Structure Determination
Related Article: Kristina S. Kisel, Alexei S. Melnikov, Elena V. Grachova, Antti J. Karttunen, Antonio Doménech-Carbó, Kirill Yu. Monakhov, Valentin G. Semenov, Sergey P. Tunik, Igor O. Koshevoy|2019|Inorg.Chem.|58|1988|doi:10.1021/acs.inorgchem.8b02974
CCDC 929107: Experimental Crystal Structure Determination
Related Article: Sari M. Närhi, Johanna Kutuniva, Marja K. Lajunen, Manu K. Lahtinen, Heikki M. Tuononen, Antti J. Karttunen, Raija Oilunkaniemi, Risto S. Laitinen|2014|Spectrochim.Acta,Part A|117|728|doi:10.1016/j.saa.2013.09.063
CCDC 938077: Experimental Crystal Structure Determination
Related Article: Igor O. Koshevoy, Antti J. Karttunen, Ilya S. Kritchenkou, Dmitrii V. Krupenya, Stanislav I. Selivanov, Alexei S. Melnikov, Sergey P. Tunik, Matti Haukka, and Tapani A. Pakkanen|2013|Inorg.Chem.|52|3663|doi:10.1021/ic302105a
CCDC 938080: Experimental Crystal Structure Determination
Related Article: Igor O. Koshevoy, Antti J. Karttunen, Ilya S. Kritchenkou, Dmitrii V. Krupenya, Stanislav I. Selivanov, Alexei S. Melnikov, Sergey P. Tunik, Matti Haukka, and Tapani A. Pakkanen|2013|Inorg.Chem.|52|3663|doi:10.1021/ic302105a
CCDC 929106: Experimental Crystal Structure Determination
Related Article: Sari M. Närhi, Johanna Kutuniva, Marja K. Lajunen, Manu K. Lahtinen, Heikki M. Tuononen, Antti J. Karttunen, Raija Oilunkaniemi, Risto S. Laitinen|2014|Spectrochim.Acta,Part A|117|728|doi:10.1016/j.saa.2013.09.063
CCDC 938078: Experimental Crystal Structure Determination
Related Article: Igor O. Koshevoy, Antti J. Karttunen, Ilya S. Kritchenkou, Dmitrii V. Krupenya, Stanislav I. Selivanov, Alexei S. Melnikov, Sergey P. Tunik, Matti Haukka, and Tapani A. Pakkanen|2013|Inorg.Chem.|52|3663|doi:10.1021/ic302105a
CCDC 1873815: Experimental Crystal Structure Determination
Related Article: Kristina S. Kisel, Alexei S. Melnikov, Elena V. Grachova, Antti J. Karttunen, Antonio Doménech-Carbó, Kirill Yu. Monakhov, Valentin G. Semenov, Sergey P. Tunik, Igor O. Koshevoy|2019|Inorg.Chem.|58|1988|doi:10.1021/acs.inorgchem.8b02974
CCDC 962933: Experimental Crystal Structure Determination
Related Article: Ilya S. Krytchankou, Dmitry V. Krupenya, Antti J. Karttunen, Sergey P. Tunik, Tapani A. Pakkanen, Pi-Tai Chou, Igor O. Koshevoy|2014|Dalton Trans.|43|3383|doi:10.1039/C3DT52658E
CCDC 1873817: Experimental Crystal Structure Determination
Related Article: Kristina S. Kisel, Alexei S. Melnikov, Elena V. Grachova, Antti J. Karttunen, Antonio Doménech-Carbó, Kirill Yu. Monakhov, Valentin G. Semenov, Sergey P. Tunik, Igor O. Koshevoy|2019|Inorg.Chem.|58|1988|doi:10.1021/acs.inorgchem.8b02974
CCDC 962934: Experimental Crystal Structure Determination
Related Article: Ilya S. Krytchankou, Dmitry V. Krupenya, Antti J. Karttunen, Sergey P. Tunik, Tapani A. Pakkanen, Pi-Tai Chou, Igor O. Koshevoy|2014|Dalton Trans.|43|3383|doi:10.1039/C3DT52658E
CCDC 962937: Experimental Crystal Structure Determination
Related Article: Ilya S. Krytchankou, Dmitry V. Krupenya, Antti J. Karttunen, Sergey P. Tunik, Tapani A. Pakkanen, Pi-Tai Chou, Igor O. Koshevoy|2014|Dalton Trans.|43|3383|doi:10.1039/C3DT52658E
CCDC 938079: Experimental Crystal Structure Determination
Related Article: Igor O. Koshevoy, Antti J. Karttunen, Ilya S. Kritchenkou, Dmitrii V. Krupenya, Stanislav I. Selivanov, Alexei S. Melnikov, Sergey P. Tunik, Matti Haukka, and Tapani A. Pakkanen|2013|Inorg.Chem.|52|3663|doi:10.1021/ic302105a
CCDC 1873812: Experimental Crystal Structure Determination
Related Article: Kristina S. Kisel, Alexei S. Melnikov, Elena V. Grachova, Antti J. Karttunen, Antonio Doménech-Carbó, Kirill Yu. Monakhov, Valentin G. Semenov, Sergey P. Tunik, Igor O. Koshevoy|2019|Inorg.Chem.|58|1988|doi:10.1021/acs.inorgchem.8b02974
CCDC 1873819: Experimental Crystal Structure Determination
Related Article: Kristina S. Kisel, Alexei S. Melnikov, Elena V. Grachova, Antti J. Karttunen, Antonio Doménech-Carbó, Kirill Yu. Monakhov, Valentin G. Semenov, Sergey P. Tunik, Igor O. Koshevoy|2019|Inorg.Chem.|58|1988|doi:10.1021/acs.inorgchem.8b02974
CCDC 1873818: Experimental Crystal Structure Determination
Related Article: Kristina S. Kisel, Alexei S. Melnikov, Elena V. Grachova, Antti J. Karttunen, Antonio Doménech-Carbó, Kirill Yu. Monakhov, Valentin G. Semenov, Sergey P. Tunik, Igor O. Koshevoy|2019|Inorg.Chem.|58|1988|doi:10.1021/acs.inorgchem.8b02974
CCDC 1873820: Experimental Crystal Structure Determination
Related Article: Kristina S. Kisel, Alexei S. Melnikov, Elena V. Grachova, Antti J. Karttunen, Antonio Doménech-Carbó, Kirill Yu. Monakhov, Valentin G. Semenov, Sergey P. Tunik, Igor O. Koshevoy|2019|Inorg.Chem.|58|1988|doi:10.1021/acs.inorgchem.8b02974
CCDC 938076: Experimental Crystal Structure Determination
Related Article: Igor O. Koshevoy, Antti J. Karttunen, Ilya S. Kritchenkou, Dmitrii V. Krupenya, Stanislav I. Selivanov, Alexei S. Melnikov, Sergey P. Tunik, Matti Haukka, and Tapani A. Pakkanen|2013|Inorg.Chem.|52|3663|doi:10.1021/ic302105a
CCDC 929108: Experimental Crystal Structure Determination
Related Article: Sari M. Närhi, Johanna Kutuniva, Marja K. Lajunen, Manu K. Lahtinen, Heikki M. Tuononen, Antti J. Karttunen, Raija Oilunkaniemi, Risto S. Laitinen|2014|Spectrochim.Acta,Part A|117|728|doi:10.1016/j.saa.2013.09.063
CCDC 1873816: Experimental Crystal Structure Determination
Related Article: Kristina S. Kisel, Alexei S. Melnikov, Elena V. Grachova, Antti J. Karttunen, Antonio Doménech-Carbó, Kirill Yu. Monakhov, Valentin G. Semenov, Sergey P. Tunik, Igor O. Koshevoy|2019|Inorg.Chem.|58|1988|doi:10.1021/acs.inorgchem.8b02974
CCDC 916953: Experimental Crystal Structure Determination
Related Article: Igor O. Koshevoy, Yuh-Chia Chang, Antti J. Karttunen, Julia R. Shakirova, Janne Jänis, Matti Haukka, Tapani Pakkanen, Pi-Tai Chou|2013|Chem.-Eur.J.|19|5104|doi:10.1002/chem.201204611
CCDC 929109: Experimental Crystal Structure Determination
Related Article: Sari M. Närhi, Johanna Kutuniva, Marja K. Lajunen, Manu K. Lahtinen, Heikki M. Tuononen, Antti J. Karttunen, Raija Oilunkaniemi, Risto S. Laitinen|2014|Spectrochim.Acta,Part A|117|728|doi:10.1016/j.saa.2013.09.063
CCDC 916954: Experimental Crystal Structure Determination
Related Article: Igor O. Koshevoy, Yuh-Chia Chang, Antti J. Karttunen, Julia R. Shakirova, Janne Jänis, Matti Haukka, Tapani Pakkanen, Pi-Tai Chou|2013|Chem.-Eur.J.|19|5104|doi:10.1002/chem.201204611