0000000001302206
AUTHOR
Yanling Li
Field-induced single ion magnet behaviour of discrete and one-dimensional complexes containing [bis(1-methylimidazol-2-yl)ketone]-cobalt(II) building units.
International audience; We describe herein the first examples of six-coordinate CoII single-ion magnets (SIMs) based on the β-diimine Mebik ligand [Mebik = bis(1-methylimidazol-2-yl)ketone]: two mononuclear [CoII(Rbik)2L2] complexes and one mixed-valence {CoIII2CoII}n chain of formulas [CoII(Mebik)(H2O)(dmso)(μ-NC)2CoIII2(μ-2,5-dpp)(CN)6]n·1.4nH2O (3) [L = NCS (1), NCSe (2) and 2,5-dpp = 2,5-bis(2-pyridyl)pyrazine (3)]. Two bidentate Mebik molecules plus two monodentate N-coordinated pseudohalide groups in cis positions build somewhat distorted octahedral surroundings around the high-spin cobalt(II) ions in 1 and 2. The diamagnetic [CoIII2(μ-2,5-dpp)(CN)8]2− metalloligand coordinates the pa…
Dicopper(II) Anthraquinophanes as Multielectron Reservoirs for Oxidation and Reduction: A Joint Experimental and Theoretical Study
Two new dinuclear copper(II) metallacyclophanes with 1,4-disubstituted 9,10-anthraquinonebis(oxamate) bridging ligands are reported that can reversibly take and release electrons at the redox-active ligand and metal sites, respectively, to give the corresponding mono- and bis(semiquinonate and/or catecholate) Cu(II)2 species and mixed-valent Cu(II)/Cu(III) and high-valent Cu(III)2 ones. Density functional calculations allow us to give further insights on the dual ligand- and metal-based character of the redox processes in this novel family of antiferromagnetically coupled di- copper(II) anthraquinophanes. This unique ability for charge storage could be the basis for the development of new k…
Photomagnetic effect in a cyanide-bridged mixed-valence {FeII2FeIII2} molecular square
The self-assembly of [Fe(III)(Tp)(CN)(3)](-) and [Fe(II)(bik)(2)(S)(2)](2+) affords the cyanide-bridged mixed valence {Fe(III)(2)Fe(II)(2)}(2+) molecular square, which exhibits a photomagnetic effect under laser light irradiation at low temperature and also shows thermal spin-state conversion near ambient temperature.
Dimensionality Switching Through a Thermally Induced Reversible Single-Crystal-to-Single-Crystal Phase Transition in a Cyanide Complex
International audience; The heterometallic hexanuclear cyanide-bridged complex {[Mn(bpym)(H(2)O)](2)[Fe(HB(pz)(3))(CN)(3)](4)} (1), its C(15)N and D(2)O enriched forms {[Mn(bpym)(H(2)O)](2)[Fe(HB(pz)(3))(C(15)N)(3)](4)} (2) and {[Mn(bpym)(D(2)O)](2)[Fe(HB(pz)(3))(CN)(3)](4)} (3), and the hexanuclear derivative complex {[Mn(bpym)(H(2)O)](2)[Fe(B(pz)(4))(CN)(3)](4)}*4H(2)O (4) [bpym = 2,2'-bipyrimidine, HB(pz)(3)(-) = hydrotris(1-pyrazolyl)borate, B(pz)(4)(-) = tetra(1-pyrazolyl)borate] have been synthesized. Their structures have been determined through single-crystal X-ray crystallography at different temperatures. Whereas 3 and 4 maintain a discrete hexanuclear motif during the entire temp…
On/Off Photoswitching in a Cyanide-Bridged {Fe2Co2} Magnetic Molecular Square
International audience; A repeatable bidirectional paramagnetic ↔ diamagnetic photomagnetic effect has been observed in the cyanide-bridged Fe-Co square complex {[Fe{B(pz)(4)}(CN)(3)](2)[Co(bik)(2)](2)}(ClO(4))(2)*3H(2)O [B(pz)(4) = tetrapyrazolylborate, bik = bis(1-methylimidazol-2-yl)ketone]. Magnetic measurements and low-temperature single-crystal X-ray diffraction experiments have shown that a complete electron transfer from the diamagnetic Fe(II)-Co(III) state to the paramagnetic Fe(III)-Co(II) metastable state is induced by 808 nm laser light irradiation, whereas the diamagnetic state is recovered in an almost quantitative yield under irradiation at 532 nm.
[FeIILSCoIIILS]2⇔ [FeIIILSCoIIHS]2 photoinduced conversion in a cyanide-bridged heterobimetallic molecular square
The self-assembly of [Fe(III){B(pz)(4)}(CN)(3)](-) and [Co(II)(bik)(2)(S)(2)](2+) affords the diamagnetic cyanide-bridged [Fe(II)(LS)Co(III)(LS)](2) molecular square which is converted into the corresponding magnetic [Fe(III)(LS)Co(II)(HS)](2) species under light irradiation at relatively low temperatures.
Cover Feature: Design of Magnetic Coordination Polymers Built from Polyoxalamide Ligands: A Thirty Year Story (Eur. J. Inorg. Chem. 3‐4/2018)
Design of Magnetic Coordination Polymers Built from Polyoxalamide Ligands: A Thirty Year Story
International audience; The aim of this review is to pay tribute to the legacy of O. Kahn. Kahn's credo was to synthesize magnetic compounds with predictable structure and magnetic properties. This is illustrated herein with results obtained by Kahn's group during his Orsay period thirty years ago, but also on the basis of our recent results on the synthesis of coordination polymers with oxamate ligands. The first part of this review is devoted to a short description of the necessary knowledge in physics and theoretical chemistry that Kahn and his group have used to select oxamate ligands, the complex‐as‐ligand strategy and the synthesis of heterobimetallic systems. Then, we describe the st…
CCDC 883430: Experimental Crystal Structure Determination
Related Article: Abhishake Mondal, Yanling Li, Mannan Seuleiman, Miguel Julve, Loic Toupet, Marylise Buron-Le Cointe, Rodrigue Lescouezec|2013|J.Am.Chem.Soc.|135|1653|doi:10.1021/ja3087467
CCDC 787111: Experimental Crystal Structure Determination
Related Article: R.Gheorge, M.Kalisz, R.Clerac, C.Mathoniere, P.Herson, Yanling Li, M.Seuleiman, R.Lescouezec, F.Lloret, M.Julve|2010|Inorg.Chem.|49|11045|doi:10.1021/ic1015725
CCDC 2096753: Experimental Crystal Structure Determination
Related Article: Juan-Ram��n Jim��nez, Buqing Xu, Hasnaa El Said, Yanling Li, Jurgen von Bardeleben, Lise-Marie Chamoreau, Rodrigue Lescou��zec, Sergiu Shova, Diana Visinescu, Maria-Gabriela Alexandru, Joan Cano, Miguel Julve|2021|Dalton Trans.|50|16353|doi:10.1039/D1DT02441H
CCDC 883431: Experimental Crystal Structure Determination
Related Article: Abhishake Mondal, Yanling Li, Mannan Seuleiman, Miguel Julve, Loic Toupet, Marylise Buron-Le Cointe, Rodrigue Lescouezec|2013|J.Am.Chem.Soc.|135|1653|doi:10.1021/ja3087467
CCDC 787113: Experimental Crystal Structure Determination
Related Article: R.Gheorge, M.Kalisz, R.Clerac, C.Mathoniere, P.Herson, Yanling Li, M.Seuleiman, R.Lescouezec, F.Lloret, M.Julve|2010|Inorg.Chem.|49|11045|doi:10.1021/ic1015725
CCDC 856634: Experimental Crystal Structure Determination
Related Article: A.Mondal, Yanling Li, P.Herson, M.Seuleiman, M.-L.Boillot, E.Riviere, M.Julve, L.Rechignat, A.Bousseksou, R.Lescouezec|2012|Chem.Commun.|48|5653|doi:10.1039/c2cc17835d
CCDC 781469: Experimental Crystal Structure Determination
Related Article: J.Mercurol, Yanling Li, E.Pardo, O.Risset, M.Seuleiman, H.Rousseliere, R.Lescouezec, M.Julve|2010|Chem.Commun.|46|8995|doi:10.1039/c0cc02024a
CCDC 787110: Experimental Crystal Structure Determination
Related Article: R.Gheorge, M.Kalisz, R.Clerac, C.Mathoniere, P.Herson, Yanling Li, M.Seuleiman, R.Lescouezec, F.Lloret, M.Julve|2010|Inorg.Chem.|49|11045|doi:10.1021/ic1015725
CCDC 2096752: Experimental Crystal Structure Determination
Related Article: Juan-Ram��n Jim��nez, Buqing Xu, Hasnaa El Said, Yanling Li, Jurgen von Bardeleben, Lise-Marie Chamoreau, Rodrigue Lescou��zec, Sergiu Shova, Diana Visinescu, Maria-Gabriela Alexandru, Joan Cano, Miguel Julve|2021|Dalton Trans.|50|16353|doi:10.1039/D1DT02441H
CCDC 787112: Experimental Crystal Structure Determination
Related Article: R.Gheorge, M.Kalisz, R.Clerac, C.Mathoniere, P.Herson, Yanling Li, M.Seuleiman, R.Lescouezec, F.Lloret, M.Julve|2010|Inorg.Chem.|49|11045|doi:10.1021/ic1015725
CCDC 2072597: Experimental Crystal Structure Determination
Related Article: Juan-Ram��n Jim��nez, Buqing Xu, Hasnaa El Said, Yanling Li, Jurgen von Bardeleben, Lise-Marie Chamoreau, Rodrigue Lescou��zec, Sergiu Shova, Diana Visinescu, Maria-Gabriela Alexandru, Joan Cano, Miguel Julve|2021|Dalton Trans.|50|16353|doi:10.1039/D1DT02441H
CCDC 787109: Experimental Crystal Structure Determination
Related Article: R.Gheorge, M.Kalisz, R.Clerac, C.Mathoniere, P.Herson, Yanling Li, M.Seuleiman, R.Lescouezec, F.Lloret, M.Julve|2010|Inorg.Chem.|49|11045|doi:10.1021/ic1015725
CCDC 912843: Experimental Crystal Structure Determination
Related Article: Abhishake Mondal, Yanling Li, Mannan Seuleiman, Miguel Julve, Loic Toupet, Marylise Buron-Le Cointe, Rodrigue Lescouezec|2013|J.Am.Chem.Soc.|135|1653|doi:10.1021/ja3087467
CCDC 948414: Experimental Crystal Structure Determination
Related Article: María Castellano, Wdeson P. Barros, Alvaro Acosta, Miguel Julve, Francesc Lloret, Yanling Li, Yves Journaux, Giovanni De Munno, Donatella Armentano, Rafael Ruiz-García, Joan Cano|2014|Chem.-Eur.J.|20|13965|doi:10.1002/chem.201403987
CCDC 883429: Experimental Crystal Structure Determination
Related Article: Abhishake Mondal, Yanling Li, Mannan Seuleiman, Miguel Julve, Loic Toupet, Marylise Buron-Le Cointe, Rodrigue Lescouezec|2013|J.Am.Chem.Soc.|135|1653|doi:10.1021/ja3087467
CCDC 787114: Experimental Crystal Structure Determination
Related Article: R.Gheorge, M.Kalisz, R.Clerac, C.Mathoniere, P.Herson, Yanling Li, M.Seuleiman, R.Lescouezec, F.Lloret, M.Julve|2010|Inorg.Chem.|49|11045|doi:10.1021/ic1015725