0000000001304706
AUTHOR
Bernd Engels
Inhibitor-Induced Dimerization of an Essential Oxidoreductase from African Trypanosomes
Trypanosomal and leishmanial infections claim tens of thousands of lives each year. The metabolism of these unicellular eukaryotic parasites differs from the human host and their enzymes thus constitute promising drug targets. Tryparedoxin (Tpx) from Trypanosoma brucei is the essential oxidoreductase in the parasite's hydroperoxide-clearance cascade. In vitro and in vivo functional assays show that a small, selective inhibitor efficiently inhibits Tpx. With X-ray crystallography, SAXS, analytical SEC, SEC-MALS, MD simulations, ITC, and NMR spectroscopy, we show how covalent binding of this monofunctional inhibitor leads to Tpx dimerization. Intra- and intermolecular inhibitor-inhibitor, pro…
Predicting 19F NMR Chemical Shifts: A Combined Computational and Experimental Study of a Trypanosomal Oxidoreductase–Inhibitor Complex
Abstract The absence of fluorine from most biomolecules renders it an excellent probe for NMR spectroscopy to monitor inhibitor–protein interactions. However, predicting the binding mode of a fluorinated ligand from a chemical shift (or vice versa) has been challenging due to the high electron density of the fluorine atom. Nonetheless, reliable 19F chemical‐shift predictions to deduce ligand‐binding modes hold great potential for in silico drug design. Herein, we present a systematic QM/MM study to predict the 19F NMR chemical shifts of a covalently bound fluorinated inhibitor to the essential oxidoreductase tryparedoxin (Tpx) from African trypanosomes, the causative agent of African sleepi…
Quantum Chemical-Based Protocol for the Rational Design of Covalent Inhibitors.
We propose a structure-based protocol for the development of customized covalent inhibitors. Starting from a known inhibitor, in the first and second steps appropriate substituents of the warhead are selected on the basis of quantum mechanical (QM) computations and hybrid approaches combining QM with molecular mechanics (QM/MM). In the third step the recognition unit is optimized using docking approaches for the noncovalent complex. These predictions are finally verified by QM/MM or molecular dynamic simulations. The applicability of our approach is successfully demonstrated by the design of reversible covalent vinylsulfone-based inhibitors for rhodesain. The examples show that our approach…
Dipeptidyl Nitroalkenes as Potent Reversible Inhibitors of Cysteine Proteases Rhodesain and Cruzain.
Dipeptidyl nitroalkenes are potent reversible inhibitors of cysteine proteases. Inhibitor 11 resulted to be the most potent one with Ki values of 0.49 and 0.44 nM against rhodesain and cruzain, respectively. According to enzymatic dilution and dialysis experiments, as well as computational and NMR studies, dipeptidyl nitroalkenes are tightly binding covalent reversible inhibitors. We thank Fundacion Española para la Ciencia y la Tecnología (Fecyt) and Generalitat Valenciana (AICO/2016/32) for financial support. T S. and B.E. thank the DFG (Deutsche Forschungsgemeinschaft) in the framework of the SFB630 for financial support. We thank Universitat Jaume I for technical suppport and funding. U…
Benchmark Study for the Cysteine-Histidine Proton Transfer Reaction in a Protein Environment: Gas Phase, COSMO, QM/MM Approaches.
Proton transfer reactions are of crucial interest for the investigation of proteins. We have investigated the accuracy of commonly used quantum chemical methods for the description of proton transfer reactions in different environments (gas phase, COSMO, QM/MM) using the proton transfer between the catalytic dyad residues cysteine 145 and histidine 41 of SARS coronavirus main protease as a case study. The test includes thermodynamic, kinetic, and structural properties. The study comprises computationally demanding ab initio approaches (HF, CC2, MP2, SCS-CC2, SCS-MP2, CCSD(T)), popular density functional theories (BLYP, B3LYP, M06-2X), and semiempirical methods (MNDO/d, AM1, RM1, PM3, PM6). …
Can Experimental Electron-Density Studies be Used as a Tool to Predict Biologically Relevant Properties of Low-Molecular Weight Enzyme Ligands?
The case of protease inhibitor model compounds incorporating an aziridine or epoxide ring is used to exemplify how application of experimental electron-density techniques can be used to explain the biological properties of low-molecular weight enzyme ligands. This is furthermore seen in the light of a comparison of crystal and enzyme environments employing QM/MM computations to elucidate to which extent the properties in the crystal can be used to predict behavior in the biological surrounding.
Electrostatic complementarity in pseudoreceptor modeling based on drug molecule crystal structures: the case of loxistatin acid (E64c)
After a long history of use as a prototype cysteine protease inhibitor, the crystal structure of loxistatin acid (E64c) is finally determined experimentally using intense synchrotron radiation, providing insight into how the inherent electronic nature of this protease inhibitor molecule determines its biochemical activity. Based on the striking similarity of its intermolecular interactions with those observed in a biological environment, the electrostatic potential of crystalline E64c is used to map the characteristics of a pseudo-enzyme pocket.
Inhibitor-induzierte Dimerisierung einer essentiellen Oxidoreduktase aus afrikanischen Trypanosomen
Fluorovinylsulfones and -Sulfonates as Potent Covalent Reversible Inhibitors of the Trypanosomal Cysteine Protease Rhodesain: Structure–Activity Relationship, Inhibition Mechanism, Metabolism, and In Vivo Studies
Rhodesain is a major cysteine protease of Trypanosoma brucei rhodesiense, a pathogen causing Human African Trypanosomiasis, and a validated drug target. Recently, we reported the development of α-halovinylsulfones as a new class of covalent reversible cysteine protease inhibitors. Here, α-fluorovinylsulfones/-sulfonates were optimized for rhodesain based on molecular modeling approaches. 2d, the most potent and selective inhibitor in the series, shows a single-digit nanomolar affinity and high selectivity toward mammalian cathepsins B and L. Enzymatic dilution assays and MS experiments indicate that 2d is a slow-tight binder (Ki = 3 nM). Furthermore, the nonfluorinated 2d-(H) shows favorabl…
Protocol for rational design of covalently interacting inhibitors.
The inhibition potencies of covalent inhibitors mainly result from the formation of a covalent bond to the enzyme during the inhibition mechanism. This class of inhibitors has essentially been ignored in previous target-directed drug discovery projects because of concerns about possible side effects. However, their advantages, such as higher binding energies and longer drug-target residence times moved them into the focus of recent investigations. While the rational design of non-covalent inhibitors became standard the corresponding design of covalent inhibitors is still in its early stages. Potent covalent inhibitors can be retrieved from large compound libraries by covalent docking approa…
Unexpected formation of a dodecanuclear {CoII6CuII6} nanowheel under ambient conditions: magneto-structural correlations.
We report the unique heterobimetallic dodecanuclear oxamate-based {CoII6CuII6} nanowheel obtained using an environmentally friendly synthetic protocol. The effective Hamiltonian methodology employed herein allows the rationalisation of magnetic isotropic or anisotropic metal clusters, being a significant advance for future studies of exciting properties only observed at low and ultralow temperatures.
Vinyl sulfone building blocks in covalently reversible reactions with thiols
In the present study we use quantum-chemical calculations to investigate how the reactivity of vinyl sulfone-based compounds can be modified from an irreversible to a reversible reaction with thiols. Based on the predictions from theory, an array of nine different vinyl sulfones with systematically varying substitution pattern was synthesized and their crystal structures were determined. Subsequent Hirshfeld surface analyses employing the principle of electrostatic complementarity aid the understanding of the crystal packing of the synthesized compounds. Reactivity studies against the nucleophile 2-phenylethanethiol mirror the properties predicted by the quantum-chemical computations in sol…
Evidence for substrate binding-induced zwitterion formation in the catalytic Cys-His dyad of the SARS-CoV main protease.
The coronavirus main protease (M(pro)) represents an attractive drug target for antiviral therapy of coronavirus (CoV) infections, including severe acute respiratory syndrome (SARS). The SARS-CoV M(pro) and related CoV proteases have several distinct features, such as an uncharged Cys-His catalytic dyad embedded in a chymotrypsin-like protease fold, that clearly separate these enzymes from archetypical cysteine proteases. To further characterize the catalytic system of CoV main proteases and to obtain information about improved inhibitors, we performed comprehensive simulations of the proton-transfer reactions in the SARS-CoV M(pro) active site that lead to the Cys(-)/His(+) zwitterionic st…
Similarities and differences between crystal and enzyme environmental effects on the electron density of drug molecules
Abstract The crystal interaction density is generally assumed to be a suitable measure of the polarization of a low‐molecular weight ligand inside an enzyme, but this approximation has seldomly been tested and has never been quantified before. In this study, we compare the crystal interaction density and the interaction electrostatic potential for a model compound of loxistatin acid (E64c) with those inside cathepsin B, in solution, and in vacuum. We apply QM/MM calculations and experimental quantum crystallography to show that the crystal interaction density is indeed very similar to the enzyme interaction density. Less than 0.1 e are shifted between these two environments in total. Howeve…
CCDC 897063: Experimental Crystal Structure Determination
Related Article: Thomas H. Schneider, Max Rieger, Kay Ansorg, Alexandre N. Sobolev, Tanja Schirmeister, Bernd Engels, Simon Grabowsky|2015|New J.Chem.|39|5841|doi:10.1039/C5NJ00368G
CCDC 897056: Experimental Crystal Structure Determination
Related Article: Thomas H. Schneider, Max Rieger, Kay Ansorg, Alexandre N. Sobolev, Tanja Schirmeister, Bernd Engels, Simon Grabowsky|2015|New J.Chem.|39|5841|doi:10.1039/C5NJ00368G
CCDC 897057: Experimental Crystal Structure Determination
Related Article: Thomas H. Schneider, Max Rieger, Kay Ansorg, Alexandre N. Sobolev, Tanja Schirmeister, Bernd Engels, Simon Grabowsky|2015|New J.Chem.|39|5841|doi:10.1039/C5NJ00368G
CCDC 1981158: Experimental Crystal Structure Determination
Related Article: Philipp Klein, Patrick Johè, Fabian Barthels, Annika Wagner, Stefan Tenzer, Ute Distler, Thien Anh Le, Bernd Engels, Ute A. Hellmich, Till Opatz, Tanja Schirmeister|2020|Molecules|25|2064|doi:10.3390/molecules25092064
CCDC 977799: Experimental Crystal Structure Determination
Related Article: Ming W. Shi, Alexandre N. Sobolev, Tanja Schirmeister, Bernd Engels, Thomas C. Schmidt, Peter Luger, Stefan Mebs, Birger Dittrich, Yu-Sheng Chen, Joanna M. Bąk, Dylan Jayatilaka, Charles S. Bond, Michael J. Turner, Scott G. Stewart, Mark A. Spackman and Simon Grabowsky|2015|New J.Chem.|39|1628|doi:10.1039/C4NJ01503G
CCDC 1862408: Experimental Crystal Structure Determination
Related Article: Annika Wagner, Thien Anh Le, Martha Brennich, Philipp Klein, Nicole Bader, Erika Diehl, Daniel Paszek, A. Katharina Weickhmann, Natalie Dirdjaja, R. Luise Krauth-Siegel, Bernd Engels, Till Opatz, Hermann Schindelin, Ute A. Hellmich|2019|Angew.Chem.,Int.Ed.|58|3640|doi:10.1002/anie.201810470
CCDC 897062: Experimental Crystal Structure Determination
Related Article: Thomas H. Schneider, Max Rieger, Kay Ansorg, Alexandre N. Sobolev, Tanja Schirmeister, Bernd Engels, Simon Grabowsky|2015|New J.Chem.|39|5841|doi:10.1039/C5NJ00368G
CCDC 897061: Experimental Crystal Structure Determination
Related Article: Thomas H. Schneider, Max Rieger, Kay Ansorg, Alexandre N. Sobolev, Tanja Schirmeister, Bernd Engels, Simon Grabowsky|2015|New J.Chem.|39|5841|doi:10.1039/C5NJ00368G
CCDC 1031229: Experimental Crystal Structure Determination
Related Article: Walace D. do Pim, Ingrid F. Silva, Eufrânio N. da Silva Júnior, Humberto O. Stumpf, Willian X. C. Oliveira, Emerson F. Pedroso, Carlos B. Pinheiro, Yves Journaux, Felipe Fantuzzi, Ivo Krummenacher, Holger Braunschweig, Bernd Engels, Joan Cano, Miguel Julve, Cynthia L. M. Pereira|2021|Dalton Trans.|50|12430|doi:10.1039/D1DT02268G
CCDC 897060: Experimental Crystal Structure Determination
Related Article: Thomas H. Schneider, Max Rieger, Kay Ansorg, Alexandre N. Sobolev, Tanja Schirmeister, Bernd Engels, Simon Grabowsky|2015|New J.Chem.|39|5841|doi:10.1039/C5NJ00368G
CCDC 897059: Experimental Crystal Structure Determination
Related Article: Thomas H. Schneider, Max Rieger, Kay Ansorg, Alexandre N. Sobolev, Tanja Schirmeister, Bernd Engels, Simon Grabowsky|2015|New J.Chem.|39|5841|doi:10.1039/C5NJ00368G
CCDC 2024395: Experimental Crystal Structure Determination
Related Article: Florian Kleemiss, Erna K. Wieduwilt, Emanuel Hupf, Ming W. Shi, Scott G. Stewart, Dylan Jayatilaka, Michael J. Turner, Kunihisa Sugimoto, Eiji Nishibori, Tanja Schirmeister, Thomas C. Schmidt, Bernd Engels, Simon Grabowsky|2021|Chem.-Eur.J.|27|3407|doi:10.1002/chem.202003978
CCDC 897058: Experimental Crystal Structure Determination
Related Article: Thomas H. Schneider, Max Rieger, Kay Ansorg, Alexandre N. Sobolev, Tanja Schirmeister, Bernd Engels, Simon Grabowsky|2015|New J.Chem.|39|5841|doi:10.1039/C5NJ00368G