0000000001305665

AUTHOR

Sara G. Miralles

Energy Storage: Giant Enhancement in the Supercapacitance of NiFe–Graphene Nanocomposites Induced by a Magnetic Field (Adv. Mater. 28/2019)

research product

Design of Molecular Spintronics Devices Containing Molybdenum Oxide as Hole Injection Layer

research product

Giant Enhancement in the Supercapacitance of NiFe–Graphene Nanocomposites Induced by a Magnetic Field

The rapid rise in energy demand in the past years has prompted a search for low-cost alternatives for energy storage, supercapacitors being one of the most important devices. It is shown that a dramatic enhancement (≈1100%, from 155 to 1850 F g-1 ) of the specific capacitance of a hybrid stimuli-responsive FeNi3 -graphene electrode material can be achieved when the charge/discharge cycling is performed in the presence of an applied magnetic field of 4000 G. This result is related to an unprecedented magnetic-field-induced metal segregation of the FeNi3 nanoparticles during the cycling, which results in the appearance of small Ni clusters (<5 nm) and, consequently, in an increase in pseudoca…

research product

Enhancing Light Emission in Interface Engineered Spin-OLEDs through Spin-Polarized Injection at High Voltages

The quest for a spin-polarized organic light-emitting diode (spin-OLED) is a common goal in the emerging fields of molecular electronics and spintronics. In this device, two ferromagnetic (FM) electrodes are used to enhance the electroluminescence intensity of the OLED through a magnetic control of the spin polarization of the injected carriers. The major difficulty is that the driving voltage of an OLED device exceeds a few volts, while spin injection in organic materials is only efficient at low voltages. The fabrication of a spin-OLED that uses a conjugated polymer as bipolar spin collector layer and ferromagnetic electrodes is reported here. Through a careful engineering of the organic/…

research product

Sublimable chloroquinolinate lanthanoid single-ion magnets deposited on ferromagnetic electrodes

A new family of chloroquinolinate lanthanoid complexes of the formula A+[Ln(5,7Cl2q)4]−, with Ln = Y3+, Tb3+ and Dy3+ and A+ = Na+, NEt4+ and K0.5(NEt4)0.5+, is studied, both in bulk and as thin films. Several members of the family are found to present single-molecule magnetic behavior in bulk. Interestingly, the sodium salts can be sublimed under high vacuum conditions retaining their molecular structures and magnetic properties. These thermally stable compounds have been deposited on different substrates (Al2O3, Au and NiFe). The magnetic properties of these molecular films show the appearance of cusps in the zero-field cooled curves when they are deposited on permalloy (NiFe). This indic…

research product

Sublimable Single Ion Magnets Based on Lanthanoid Quinolinate Complexes: The Role of Intermolecular Interactions on Their Thermal Stability

We report the design, preparation, and characterization of two families of thermally robust coordination complexes based on lanthanoid quinolinate compounds: [Ln(5,7-Br2q)4]− and [Ln(5,7-ClIq)4]−, where q = 8-hydroquinolinate anion and Ln = DyIII, TbIII, ErIII, and HoIII. The sodium salt of [Dy(5,7-Br2q)4]− decomposes upon sublimation, whereas the sodium salt of [Dy(5,7- ClIq)4]−, which displays subtly different crystalline interactions, is sublimable under gentle conditions. The resulting film presents low roughness with high coverage, and the molecular integrity of the coordination complex is verified through AFM, MALDI-TOF, FT-IR, and microanalysis. Crucially, the single-molecule magnet …

research product

Interface-Assisted Sign Inversion of Magnetoresistance in Spin Valves Based on Novel Lanthanide Quinoline Molecules

Molecules are proposed to be an efficient medium to host spin-polarized carriers, due to their weak spin relaxation mechanisms. While relatively long spin lifetimes are measured in molecular devices, the most promising route toward device functionalization is to use the chemical versatility of molecules to achieve a deterministic control and manipulation of the electron spin. Here, by combining magnetotransport experiments with element-specific X-ray absorption spectroscopy, this study shows the ability of molecules to modify spin-dependent properties at the interface level via metal–molecule hybridization pathways. In particular, it is described how the formation of hybrid states determine…

research product

Sublimable chloroquinolinate lanthanoid single-ion magnets deposited on ferromagnetic electrodes† †Electronic supplementary information (ESI) available. CCDC 1557647–1557649. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7sc03463f

Magnetic analogues of Alq3 give rise to molecular/ferromagnetic interfaces with specific hybridization, opening the door to interesting spintronic effects.

research product

CCDC 1562347: Experimental Crystal Structure Determination

Related Article: Walter Cañon-Mancisidor, Sara G. Miralles, José J. Baldoví, Guillermo Mínguez Espallargas, Alejandro Gaita-Ariño, Eugenio Coronado|2018|Inorg.Chem.|57|14170|doi:10.1021/acs.inorgchem.8b02080

research product

CCDC 1562346: Experimental Crystal Structure Determination

Related Article: Walter Cañon-Mancisidor, Sara G. Miralles, José J. Baldoví, Guillermo Mínguez Espallargas, Alejandro Gaita-Ariño, Eugenio Coronado|2018|Inorg.Chem.|57|14170|doi:10.1021/acs.inorgchem.8b02080

research product

CCDC 1562348: Experimental Crystal Structure Determination

Related Article: Walter Cañon-Mancisidor, Sara G. Miralles, José J. Baldoví, Guillermo Mínguez Espallargas, Alejandro Gaita-Ariño, Eugenio Coronado|2018|Inorg.Chem.|57|14170|doi:10.1021/acs.inorgchem.8b02080

research product

CCDC 1562344: Experimental Crystal Structure Determination

Related Article: Walter Cañon-Mancisidor, Sara G. Miralles, José J. Baldoví, Guillermo Mínguez Espallargas, Alejandro Gaita-Ariño, Eugenio Coronado|2018|Inorg.Chem.|57|14170|doi:10.1021/acs.inorgchem.8b02080

research product

CCDC 1557648: Experimental Crystal Structure Determination

Related Article: Sara G. Miralles, Amilcar Bedoya-Pinto, José J. Baldoví, Walter Cañon-Mancisidor, Yoann Prado, Helena Prima-Garcia, Alejandro Gaita-Ariño, Guillermo Mínguez Espallargas, Luis E. Hueso, Eugenio Coronado|2018|Chemical Science|9|199|doi:10.1039/C7SC03463F

research product

CCDC 1557649: Experimental Crystal Structure Determination

Related Article: Sara G. Miralles, Amilcar Bedoya-Pinto, José J. Baldoví, Walter Cañon-Mancisidor, Yoann Prado, Helena Prima-Garcia, Alejandro Gaita-Ariño, Guillermo Mínguez Espallargas, Luis E. Hueso, Eugenio Coronado|2018|Chemical Science|9|199|doi:10.1039/C7SC03463F

research product

CCDC 1562345: Experimental Crystal Structure Determination

Related Article: Walter Cañon-Mancisidor, Sara G. Miralles, José J. Baldoví, Guillermo Mínguez Espallargas, Alejandro Gaita-Ariño, Eugenio Coronado|2018|Inorg.Chem.|57|14170|doi:10.1021/acs.inorgchem.8b02080

research product

CCDC 1562349: Experimental Crystal Structure Determination

Related Article: Walter Cañon-Mancisidor, Sara G. Miralles, José J. Baldoví, Guillermo Mínguez Espallargas, Alejandro Gaita-Ariño, Eugenio Coronado|2018|Inorg.Chem.|57|14170|doi:10.1021/acs.inorgchem.8b02080

research product

CCDC 1562351: Experimental Crystal Structure Determination

Related Article: Walter Cañon-Mancisidor, Sara G. Miralles, José J. Baldoví, Guillermo Mínguez Espallargas, Alejandro Gaita-Ariño, Eugenio Coronado|2018|Inorg.Chem.|57|14170|doi:10.1021/acs.inorgchem.8b02080

research product

CCDC 1562350: Experimental Crystal Structure Determination

Related Article: Walter Cañon-Mancisidor, Sara G. Miralles, José J. Baldoví, Guillermo Mínguez Espallargas, Alejandro Gaita-Ariño, Eugenio Coronado|2018|Inorg.Chem.|57|14170|doi:10.1021/acs.inorgchem.8b02080

research product

CCDC 1557647: Experimental Crystal Structure Determination

Related Article: Sara G. Miralles, Amilcar Bedoya-Pinto, José J. Baldoví, Walter Cañon-Mancisidor, Yoann Prado, Helena Prima-Garcia, Alejandro Gaita-Ariño, Guillermo Mínguez Espallargas, Luis E. Hueso, Eugenio Coronado|2018|Chemical Science|9|199|doi:10.1039/C7SC03463F

research product

Cover Picture. Energy Storage: Giant Enhancement in the Supercapacitance of NiFe-Graphene Nanocomposites Induced by a Magnetic Field (Adv. Mater. 28/2019)

The application of external magnetic fields to NiFe–graphene nanocomposites during the galvanostatic charge/discharge cycles induces a dramatic metal phase segregation, forming nanometric metal clusters of Ni with an outstanding electrochemical activity. This metal segregation leads to an enhancement in the capacitance of the nanocomposite, as described by Gonzalo Abellán, Eugenio Coronado, and co-workers in article number 1900189. PNICTOCHEM 804110 (G.A.) CIDEGENT/2018/001

research product