0000000001305971

AUTHOR

Yaşar Krysiak

Ab initio structure determination and quantitative disorder analysis on nanoparticles by electron diffraction tomography.

Nanoscaled porous materials such as zeolites have attracted substantial attention in industry due to their catalytic activity, and their performance in sorption and separation processes. In order to understand the properties of such materials, current research focuses increasingly on the determination of structural features beyond the averaged crystal structure. Small particle sizes, various types of disorder and intergrown structures render the description of structures at atomic level by standard crystallographic methods difficult. This paper reports the characterization of a strongly disordered zeolite structure, using a combination of electron exit-wave reconstruction, automated diffrac…

research product

Multistep Crystallization Pathways in the Ambient‐Temperature Synthesis of a New Alkali‐Activated Binder

research product

Structural insights into M2O-Al2O3-WO3 (M = Na, K) system by electron diffraction tomography.

TheM2O–Al2O3–WO3(M= alkaline metals) system has attracted the attention of the scientific community because some of its members showed potential applications as single crystalline media for tunable solid-state lasers. These materials behave as promising laser host materials due to their high and continuous transparency in the wide range of the near-IR region. A systematic investigation of these phases is nonetheless hampered because it is impossible to produce large crystals and only in a few cases a pure synthetic product can be achieved. Despite substantial advances in X-ray powder diffraction methods, structure investigation on nanoscale is still challenging, especially when the sample i…

research product

Elucidating structural order and disorder phenomena in mullite-type Al4B2O9 by automated electron diffraction tomography

The crystal structure and disorder phenomena of Al4B2O9, an aluminum borate from the mullite-type family, were studied using automated diffraction tomography (ADT), a recently established method for collection and analysis of electron diffraction data. Al4B2O9, prepared by sol-gel approach, crystallizes in the monoclinic space group C2/m. The ab initio structure determination based on three-dimensional electron diffraction data from single ordered crystals reveals that edge-connected AlO6 octahedra expanding along the b axis constitute the backbone. The ordered structure (A) was confirmed by TEM and HAADF-STEM images. Furthermore, disordered crystals with diffuse scattering along the b axis…

research product

Fast-ADT: A fast and automated electron diffraction tomography setup for structure determination and refinement.

Abstract Electron crystallography has focused in the last few years on the analyses of microcrystals, mainly organic compounds, triggered by recent publications on acquisition methods based on direct detection cameras and continuous stage tilting. However, the main capability of a transmission electron microscope is the access to features at the nanometre scale. In this context, a new acquisition method, called fast and automated diffraction tomography (Fast-ADT), has been developed in form of a general application in order to get the most of the diffraction space from a TEM. It consists of two subsequent tilt scans of the goniometric stage; one to obtain a crystal tracking file and a secon…

research product

Automated electron diffraction tomography – development and applications

Electron diffraction tomography, a potential method for structure analysis of nanocrystals, and, in more detail, the strategies to use automated diffraction tomography (ADT) technique are described. Examples of ADT application are discussed according to the material class.

research product

Solid State Fluorination on the Minute Scale: Synthesis of WO 3− x F x with Photocatalytic Activity

research product

The Elusive Structure of Magadiite, Solved by 3D Electron Diffraction and Model Building

In addition to a great swelling ability, layered silicates also allow the functionalization of their interlayer region to form various robust green materials that are used as CO2 adsorbents, drug c...

research product

Solving Challenging Crystallographic Problems with Automated Electron Diffraction Tomography (ADT)

research product

Solving the Hydrogen and Lithium Substructure of Poly(triazine imide)/LiCl Using NMR Crystallography

Poly(triazine imide) with incorporated lithium chloride has recently attracted substantial attention due to its photocatalytic activity for water splitting. However, an apparent H/Li disorder prevents the delineation of structure–property relationships, for example, with respect to band-gap tuning. Herein, we show that through a combination of one- and two-dimensional, multinuclear solid-state NMR spectroscopy, chemical modelling, automated electron diffraction tomography, and an analysis based on X-ray pair distribution functions, it is finally possible to resolve the H/Li substructure. In each cavity, one hydrogen atom is bound to a bridging nitrogen atom, while a second one protonates a …

research product

High Electron Mobility and Disorder Induced by Silver Ion Migration Lead to Good Thermoelectric Performance in the Argyrodite Ag8SiSe6

Superionic chalcopyrites have recently attracted interest in their use as potential thermoelectric materials because of extraordinary low thermal conductivities. To overcome long-term stability issues in thermoelectric generators using superionic materials at evaluated temperatures, materials need to be found that show good thermoelectric performance at moderate temperatures. Here, we present the structural and thermoelectric properties of the argyrodite Ag8SiSe6, which exhibits promising thermoelectric performance close to room temperature.

research product

Crystal Structures and Polymorphism of Nickel and Copper Coordination Polymers with Pyridine Ligands

The crystal structures of a series of pyridine coordination polymers [MIICl2(C5H5N)x]n (M = Ni, Cu), prepared via thermal decomposition are reported. [NiCl2(C5H5N)4] (1) decomposes stepwise via [NiCl2(C5H5N)2]n (2), [NiCl2(C5H5N)]n (3), and [NiCl2(C5H5N)2/3]n (4), to NiCl2 with increasing temperature. The thermal decomposition of [CuCl2(C5H5N)2]n (5), progresses via two polymorphs of [CuCl2(C5H5N)]n (6a and 6b), and [CuCl2(C5H5N)2/3]n (7), to CuCl2. The compounds 3, 4, and 7 were prepared as pure phases. All crystal structures were determined by X-ray powder diffraction. Notably, the crystal structures of the polymorphs 6a and 6b were determined from powder diffraction data of a mixture of …

research product

Two new members of the Silica-X family of materials: RUB-5, a silica zeolite with a very high framework density and RUB-6, a hydrous layer silicate

Abstract The new zeolite RUB-5 and the new phyllo silicate RUB-6 were synthesized at temperatures between 130 °C and 200 °C from reaction mixtures consisting of SiO2/LiOH/B(OH)3/OA/H2O or SiO2/KOH/OA/H2O (OA = organic additive). Physico-chemical characterization using solid-state NMR spectroscopy, SEM, TG-DTA, and ATR-FTIR spectroscopy confirmed that RUB-5 is a framework silicate while RUB-6 is a layer silicate. The XRD powder patterns were indexed in monoclinic symmetry (space group: C2) with lattice parameters of a0 = 10.2699 (4) A, b0 = 10.6556 (4) A, c0 = 18.1551 (7) A and β = 106.35 (1)° (RUB-5), and a0 = 10.1100 (43) A, b0 = 10.6956 (51) A, c0 = 20.5448 (44) A and β = 105.79 (1)° (RUB…

research product

New zeolite-like RUB-5 and its related hydrous layer silicate RUB-6 structurally characterized by electron microscopy.

RUB-5 and its related hydrous layer silicate RUB-6 were synthesized in the 1990s, but so far their structures have remained unknown due to their low crystallinity and disorder. The combination of 3D electron diffraction, X-ray powder diffraction, high-resolution transmission electron microscopy, structural modelling and diffraction simulations has enabled a comprehensive description of these two nanomaterials, revealng a new framework topology and a unique silica polymorph.

research product

CSD 1995979: Experimental Crystal Structure Determination

Related Article: Yaşar Krysiak, Bernd Marler, Bastian Barton, Sergi Plana-Ruiz, Hermann Gies, Reinhard B. Neder, Ute Kolb|2020|IUCrJ|7|522|doi:10.1107/s2052252520003991

research product

CCDC 1503642: Experimental Crystal Structure Determination

Related Article: Yaşar Krysiak, Lothar Fink, Thomas Bernert, Jürgen Glinnemann, Martin Kapuscinski, Haishuang Zhao, Edith Alig, Martin U. Schmidt|2014|Z.Anorg.Allg.Chem.|640|3190|doi:10.1002/zaac.201400505

research product

CCDC 1503641: Experimental Crystal Structure Determination

Related Article: Yaşar Krysiak, Lothar Fink, Thomas Bernert, Jürgen Glinnemann, Martin Kapuscinski, Haishuang Zhao, Edith Alig, Martin U. Schmidt|2014|Z.Anorg.Allg.Chem.|640|3190|doi:10.1002/zaac.201400505

research product

CCDC 1503643: Experimental Crystal Structure Determination

Related Article: Yaşar Krysiak, Lothar Fink, Thomas Bernert, Jürgen Glinnemann, Martin Kapuscinski, Haishuang Zhao, Edith Alig, Martin U. Schmidt|2014|Z.Anorg.Allg.Chem.|640|3190|doi:10.1002/zaac.201400505

research product

CCDC 1503639: Experimental Crystal Structure Determination

Related Article: Yaşar Krysiak, Lothar Fink, Thomas Bernert, Jürgen Glinnemann, Martin Kapuscinski, Haishuang Zhao, Edith Alig, Martin U. Schmidt|2014|Z.Anorg.Allg.Chem.|640|3190|doi:10.1002/zaac.201400505

research product

CCDC 1991689: Experimental Crystal Structure Determination

Related Article: Yaşar Krysiak, Bernd Marler, Bastian Barton, Sergi Plana-Ruiz, Hermann Gies, Reinhard B. Neder, Ute Kolb|2020|IUCrJ|7|522|doi:10.1107/s2052252520003991

research product

CCDC 1503640: Experimental Crystal Structure Determination

Related Article: Yaşar Krysiak, Lothar Fink, Thomas Bernert, Jürgen Glinnemann, Martin Kapuscinski, Haishuang Zhao, Edith Alig, Martin U. Schmidt|2014|Z.Anorg.Allg.Chem.|640|3190|doi:10.1002/zaac.201400505

research product