0000000001306096
AUTHOR
Martin Jung
Nitronyl Nitroxide Radicals Linked to Exchange‐Coupled Metal Dimers – Studies Using X‐ray Crystallography, Magnetic Susceptibility Measurements, EPR Spectroscopy, and DFT Calculations
To study long-range magnetic interactions between exchange-coupled metal centers and a radical moiety coordinated through a peripheral group, three new homodimetallic complexes with MnII, CoII, and ZnII bridged by a nitronyl nitroxide (NIT) substituted benzoate ligand with the structure [(NIT-C6H4-COO)M2(LR)](ClO4)2 {M = MnII, CoII, and ZnII; NIT = nitronyl nitroxide and LR = N,N,N′,N′-tetrakis(2-benzimidazolylalkyl)-2-hydroxy-1,3-diaminopropane} have been prepared and studied by X-ray crystallography, magnetic susceptibility measurements, EPR spectroscopy, and density functional theory calculations. For comparison, related complexes with MnII and CoII bridged by a diamagnetic nitrobenzoate…
The FLUXCOM ensemble of global land-atmosphere energy fluxes
Although a key driver of Earth’s climate system, global land-atmosphere energy fluxes are poorly constrained. Here we use machine learning to merge energy flux measurements from FLUXNET eddy covariance towers with remote sensing and meteorological data to estimate global gridded net radiation, latent and sensible heat and their uncertainties. The resulting FLUXCOM database comprises 147 products in two setups: (1) 0.0833° resolution using MODIS remote sensing data (RS) and (2) 0.5° resolution using remote sensing and meteorological data (RS + METEO). Within each setup we use a full factorial design across machine learning methods, forcing datasets and energy balance closure corrections. For…
Sensitivity to charged scalars in B → D(*)τν and B → τν decays
We analyze the recent experimental evidence for an excess of $\tau$-lepton production in several exclusive semileptonic $B$-meson decays in the context of two-Higgs-doublet models. These decay modes are sensitive to the exchange of charged scalars and constrain strongly their Yukawa interactions. While the usual Type-II scenario cannot accommodate the recent BaBar data, this is possible within more general models in which the charged-scalar couplings to up-type quarks are not as suppressed. Both the $B\to D^{(*)}\tau\nu_\tau$ and the $B\to\tau\nu_\tau$ data can be fitted within the framework of the Aligned Two-Higgs-Doublet Model, but the resulting parameter ranges are in conflict with the …
B -> D(*) Tau Nu decays in two-Higgs-doublet models
A sizable excess with respect to the SM expectation has been reported recently by the BaBar collaboration in the decay rates B -> D(*) Tau Nu, normalized by the corresponding light lepton modes. A violation of lepton flavor universality as suggested by this excess could be due to a charged Higgs mediating these processes at tree level. In this talk we analyze the implications of the observed excess within the framework of two-Higgs-doublet models, considering also the bounds from other semileptonic and leptonic decays of B and D(s) mesons. Prospects for B -> D(*) Tau Nu decays at future Super-Flavor Factories are also discussed.
Partitioning net carbon dioxide fluxes into photosynthesis and respiration using neural networks
Abstract The eddy covariance (EC) technique is used to measure the net ecosystem exchange (NEE) of CO2 between ecosystems and the atmosphere, offering a unique opportunity to study ecosystem responses to climate change. NEE is the difference between the total CO2 release due to all respiration processes (RECO), and the gross carbon uptake by photosynthesis (GPP). These two gross CO2 fluxes are derived from EC measurements by applying partitioning methods that rely on physiologically based functional relationships with a limited number of environmental drivers. However, the partitioning methods applied in the global FLUXNET network of EC observations do not account for the multiple co‐acting…
Ranking drivers of global carbon and energy fluxes over land
The accurate estimation of carbon and heat fluxes at global scale is paramount for future policy decisions in the context of global climate change. This paper analyzes the relative relevance of potential remote sensing and meteorological drivers of global carbon and energy fluxes over land. The study is done in an indirect way via upscaling both Gross Primary Production (GPP) and latent energy (LE) using Gaussian Process regression (GPR). In summary, GPR is successfully compared to multivariate linear regression (RMSE gain of +4.17% in GPP and +7.63% in LE) and kernel ridge regression (+2.91% in GPP and +3.07% in LE). The best GP models are then studied in terms of explanatory power based o…
Compensatory water effects link yearly global land CO2 sink changes to temperature
Large interannual variations in the measured growth rate of atmospheric carbon dioxide (CO2) originate primarily from fluctuations in carbon uptake by land ecosystems1–3. It remains uncertain, however, to what extent temperature and water availability control the carbon balance of land ecosystems across spatial and temporal scales3–14. Here we use empirical models based on eddy covariance data15 and process-based models16,17 to investigate the effect of changes in temperature and water availability on gross primary productivity (GPP), terrestrial ecosystem respiration (TER) and net ecosystem exchange (NEE) at local and global scales. We find that water availability is the dominant driver of…
Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence
Guanter, Luis et al.
Long-Distance Magnetic Interaction of Exchange-Coupled Copper Dimers with Nitronyl Nitroxide and tert-Butyl Nitroxide Radicals
To study long-distance magnetic interactions between exchange-coupled metal centers and coordinated radical moieties, two new homodimetallic Cu(II) complexes held together by the chelating ligand L(nPr) = N,N,N',N'-tetrakis(N-propyl-2-benzimidazolyl)-2-hydroxy-1,3-diaminopropane and additionally bridged by either a nitronyl nitroxide (NIT) or a tert-butyl nitroxide (NOA) radical-substituted benzoate have been prepared. The complexes have been investigated by X-ray crystallography, magnetic susceptibility measurements, electron paramagnetic resonance (EPR) spectroscopy, and density functional theory (DFT) calculations. For comparison additionally the related copper dimer with the bridging di…
New alleles and mutational events at 14 STR loci from different German populations.
The molecular origin of DNA mutations and the mutation rates were analyzed at 14 short tandem repeat (STR) loci with samples from trio cases derived from 10 different German population samples. STR loci comprised of D2S1360, D3S1744, D4S2366, D5S2500, D6S474, D7S1517, D8S1132, D10S2325, D12S391, D18S51, D19S246, D20S480, D21S226, and D22S689. In a total of 488 meioses, 16 isolated genetic inconsistencies in 8 different STRs were observed, whereas no mutations were found at the other loci. The data of five mutations suggested the presence of silent or null alleles due to sequence variation in primer binding site. This could be confirmed for four suspected cases by the use of alternative prim…
Electric Dipole Moments in Two-Higgs-Doublet Models
Electric dipole moments are extremely sensitive probes for additional sources of CP violation in new physics models. Specifically, they have been argued in the past to exclude new CP-violating phases in two-Higgs-doublet models. Since recently models including such phases have been discussed widely, we revisit the available constraints in the presence of mechanisms which are typically invoked to evade flavour-changing neutral currents. To that aim, we start by assessing the necessary calculations on the hadronic, nuclear and atomic/molecular level, deriving expressions with conservative error estimates. Their phenomenological analysis in the context of two-Higgs-doublet models yields strong…
Scalar contributions to $b\to c (u) \tau \nu$ transitions
We perform a comprehensive analysis of scalar contributions in $b \to c \tau \nu$ transitions including the latest measurements of $R(D^{(*)})$, the $q^2$ differential distributions in $B \to D^{(*)} \tau \nu$, the $\tau$ polarization asymmetry for $B \to D^{*} \tau \nu$, and the bound derived from the total width of the $B_c$ meson. We find that scalar contributions with the simultaneous presence of both left- and right-handed couplings to quarks can explain the available data, specifically $R(D^{(*)})$ together with the measured differential distributions. However, the constraints from the total $B_c$ width present a slight tension with the current data on $B \to D^{*}\tau \nu$ in this sc…
The cytoprotective protein MANF promotes neuronal survival independently from its role as a GRP78 cofactor
Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER)-stress-regulated protein exhibiting cytoprotective properties through a poorly understood mechanism in various in vitro and in vivo models of neuronal and non-neuronal damage. Although initially characterized as a secreted neurotrophic factor for midbrain dopamine neurons, MANF has recently gained more interest for its intracellular role in regulating the ER homeostasis, including serving as a cofactor of the chaperone glucose-regulated protein 78 (GRP78). We aimed for a better understanding of the neuroprotective mechanisms of MANF. Here we show for the first time that MANF promotes the survival of …
Global fit to b → cτν transitions
Abstract We perform a general model-independent analysis of $$ b\to c\tau {\overline{\nu}}_{\tau } $$ b → cτ ν ¯ τ transitions, including measurements of ℛ D , ℛ D∗, their q 2 differential distributions, the recently measured longitudinal D* polarization $$ {F}_L^{D\ast } $$ F L D ∗ , and constraints from the $$ {B}_c\to \tau {\overline{\nu}}_{\tau } $$ B c → τ ν ¯ τ lifetime, each of which has significant impact on the fit. A global fit to a general set of Wilson coefficients of an effective low-energy Hamiltonian is presented, the solutions of which are interpreted in terms of hypothetical new-physics mediators. From the obtained results we predict selected $$ b\to c\tau {\overline{\nu}}_…
Satellite Observations of the Contrasting Response of Trees and Grasses to Variations in Water Availability
Interannual variations in ecosystem primary productivity are dominated by water availability. Until recently, characterizing the photosynthetic response of different ecosystems to soil moisture anomalies was hampered by observational limitations. Here, we use a number of satellite-based proxies for productivity, including spectral indices, sun-induced chlorophyll fluorescence, and data-driven estimates of gross primary production, to reevaluate the relationship between terrestrial photosynthesis and water. In contrast to nonwoody vegetation, we find a resilience of forested ecosystems to reduced soil moisture. Sun-induced chlorophyll fluorescence and data-driven gross primary production ind…
Sensitivity to charged scalars in B -> D-(*)tau nu(tau) and B -> tau nu(tau) decays
We analyze the recent experimental evidence for an excess of tau-lepton production in several exclusive semileptonic B-meson decays in the context of two-Higgs-doublet models. These decay modes are sensitive to the exchange of charged scalars and constrain strongly their Yukawa interactions. While the usual Type-II scenario cannot accommodate the recent BaBar data, this is possible within more general models in which the charged-scalar couplings to up-type quarks are not as suppressed. Both the B -> D-(*)tau nu(tau) and the B -> tau nu(tau) data can be fitted within the framework of the Aligned Two-Higgs-Doublet Model, but the resulting parameter ranges are in conflict with the constraints …
Exclusive radiative B-meson decays within the aligned two-Higgs-doublet model
In the aligned two-Higgs-doublet model, the alignment of Yukawa matrices in flavour space guarantees the absence of tree-level flavour-changing neutral currents, while allowing at the same time for new sources of CP violation, implying potentially large effects in many low-energy processes. In this work we study the constraints from exclusive radiative $B\to V\gamma$ decays, where $V$ denotes a light vector meson. The current experimental data on the CP-averaged branching ratios and the direct CP and isospin asymmetries are analyzed. It is found that, while the branching ratios and direct CP asymmetries do not constrain the parameter space much further compared to the inclusive $B\to X_{s,d…
Deep learning and process understanding for data-driven Earth system science
Machine learning approaches are increasingly used to extract patterns and insights from the ever-increasing stream of geospatial data, but current approaches may not be optimal when system behaviour is dominated by spatial or temporal context. Here, rather than amending classical machine learning, we argue that these contextual cues should be used as part of deep learning (an approach that is able to extract spatio-temporal features automatically) to gain further process understanding of Earth system science problems, improving the predictive ability of seasonal forecasting and modelling of long-range spatial connections across multiple timescales, for example. The next step will be a hybri…
Charged-Higgs phenomenology in the aligned two-Higgs-doublet model
The alignment in flavour space of the Yukawa matrices of a general two-Higgs-doublet model results in the absence of tree-level flavour-changing neutral currents. In addition to the usual fermion masses and mixings, the aligned Yukawa structure only contains three complex parameters zeta(f), which are potential new sources of CP violation [1]. For particular values of these three parameters all known specific implementations of the model based on discrete Z(2) symmetries are recovered. One of the most distinctive features of the two-Higgs-doublet model is the presence of a charged scalar H-+/-. In this work, we discuss its main phenomenological consequences in flavour-changing processes at …
Assessing the relationship between microwave vegetation optical depth and gross primary production
At the global scale, the uptake of atmospheric carbon dioxide by terrestrial ecosystems through photosynthesis is commonly estimated through vegetation indices or biophysical properties derived from optical remote sensing data. Microwave observations of vegetated areas are sensitive to different components of the vegetation layer than observations in the optical domain and may therefore provide complementary information on the vegetation state, which may be used in the estimation of Gross Primary Production (GPP). However, the relation between GPP and Vegetation Optical Depth (VOD), a biophysical quantity derived from microwave observations, is not yet known. This study aims to explore the …
Scalar contributions to b→c(u)τν transitions
Abstract We perform a comprehensive analysis of scalar contributions in b → c τ ν transitions including the latest measurements of R ( D ( ⁎ ) ) , the q 2 differential distributions in B → D ( ⁎ ) τ ν , the τ polarization asymmetry for B → D ⁎ τ ν , and the bound derived from the total width of the B c meson. We find that scalar contributions with the simultaneous presence of both left- and right-handed couplings to quarks can explain the available data, specifically R ( D ( ⁎ ) ) together with the measured differential distributions. However, the constraints from the total B c width present a slight tension with the current data on B → D ⁎ τ ν in this scenario, preferring smaller values fo…
A unified vegetation index for quantifying the terrestrial biosphere
[EN] Empirical vegetation indices derived from spectral reflectance data are widely used in remote sensing of the biosphere, as they represent robust proxies for canopy structure, leaf pigment content, and, subsequently, plant photosynthetic potential. Here, we generalize the broad family of commonly used vegetation indices by exploiting all higher-order relations between the spectral channels involved. This results in a higher sensitivity to vegetation biophysical and physiological parameters. The presented nonlinear generalization of the celebrated normalized difference vegetation index (NDVI) consistently improves accuracy in monitoring key parameters, such as leaf area index, gross prim…
Reply to Magnani et al.: Linking large-scale chlorophyll fluorescence observations with cropland gross primary production
Guanter, Luis et al.
A carbon sink-driven approach to estimate gross primary production from microwave satellite observations
Abstract Global estimation of Gross Primary Production (GPP) - the uptake of atmospheric carbon dioxide by plants through photosynthesis - is commonly based on optical satellite remote sensing data. This presents a source-driven approach since it uses the amount of absorbed light, the main driver of photosynthesis, as a proxy for GPP. Vegetation Optical Depth (VOD) estimates obtained from microwave sensors provide an alternative and independent data source to estimate GPP on a global scale, which may complement existing GPP products. Recent studies have shown that VOD is related to aboveground biomass, and that both VOD and temporal changes in VOD relate to GPP. In this study, we build upon…
Global Groundwater-Vegetation Relations
Groundwater is an integral component of the water cycle, and it also influences the carbon cycle by supplying moisture to ecosystems. However, the extent and determinants of groundwater-vegetation interactions are poorly understood at the global scale. Using several high-resolution data products, we show that the spatial patterns of ecosystem gross primary productivity and groundwater table depth are correlated during at least one season in more than two-thirds of the global vegetated area. Positive relationships, i.e., larger productivity under shallower groundwater table, predominate in moisture-limited dry to mesic conditions with herbaceous and shrub vegetation. Negative relationships, …
Magnetic and Spectroscopic Study on a New Asymmetric Mixed-valence Mn2(II,III) Coordination Compound
A new dinuclear mixed-valence compound [MnIIMnIII(bttpnol)(O2C–C6H4–NO2)2]ClO4 was synthesized by using the asymmetric heptadentate ligand N-(2-hydroxybenzyl)-N,N′,N′-tris(2-pyridylmethyl)-1,3-diaminopropan-2-ol (H2btppnol). One central manganese atom assumes N3O3 and the other N2O4 coordination sphere. Both manganese ions are bridged by the alkoxy-group of the dinucleating ligand and two bidentate carboxylate groups of the nitrobenzoate ligands. The structural data show clearly that MnIII prefers the more oxygen rich donor set. Cyclic voltammetry measurements reveal that the mixed-valence state Mn2(II,III) could be reduced to Mn2(II,II) at E1/2(1) = –0.53 V and oxidized to Mn2(III,III) at …
Sensitivity to charged scalars in $B\to D^{(*)}\tau\nu_\tau$ and $B\to\tau\nu_\tau$ decays
We analyze the recent experimental evidence for an excess of $\tau$-lepton production in several exclusive semileptonic $B$-meson decays in the context of two-Higgs-doublet models. These decay modes are sensitive to the exchange of charged scalars and constrain strongly their Yukawa interactions. While the usual Type-II scenario cannot accommodate the recent BaBar data, this is possible within more general models in which the charged-scalar couplings to up-type quarks are not as suppressed. Both the $B\to D^{(*)}\tau\nu_\tau$ and the $B\to\tau\nu_\tau$ data can be fitted within the framework of the Aligned Two-Higgs-Doublet Model, but the resulting parameter ranges are in conflict with the …
CCDC 727665: Experimental Crystal Structure Determination
Related Article: Martin Jung and Eva Rentschler|2015|Z.Anorg.Allg.Chem.|641|2277|doi:10.1002/zaac.201500551