0000000001306470

AUTHOR

Michela Abrami

showing 7 related works from this author

Engineering approaches in siRNA delivery.

2017

siRNAs are very potent drug molecules, able to silence genes involved in pathologies development. siRNAs have virtually an unlimited therapeutic potential, particularly for the treatment of inflammatory diseases. However, their use in clinical practice is limited because of their unfavorable properties to interact and not to degrade in physiological environments. In particular they are large macromolecules, negatively charged, which undergo rapid degradation by plasmatic enzymes, are subject to fast renal clearance/hepatic sequestration, and can hardly cross cellular membranes. These aspects seriously impair siRNAs as therapeutics. As in all the other fields of science, siRNAs management ca…

0301 basic medicine3003siRNAs Delivery vectors in vitro models Mathematical modeling Physical modelingDelivery vectors; In vitro models; Mathematical modeling; Physical modeling; SiRNAs; 3003Pharmaceutical ScienceNanotechnology02 engineering and technologyComputational biologyBiology03 medical and health sciencesDrug Delivery SystemsHumanssiRNAs; Delivery vectors; in vitro models; Mathematical modeling; Physical modelingRNA Small Interferingin vitro modelsPhysical modelingSettore ING-IND/34 - Bioingegneria IndustrialeHydrogelsDelivery vectorsModels Theoretical021001 nanoscience & nanotechnologyDelivery vectorsiRNAsClinical PracticeHydrogel030104 developmental biologyin vitro modelsiRNAMathematical modeling0210 nano-technologyBlood streamDrug Delivery SystemClearanceHumanInternational journal of pharmaceutics
researchProduct

Novel Lipid and Polymeric Materials as Delivery Systems for Nucleic Acid Based Drugs

2015

Nucleic acid based drugs (NADBs) are short DNA/RNA molecules that include among others, antisense oligonucleotides, aptamers, small interfering RNAs and micro-interfering RNAs. Despite the different mechanisms of actions, NABDs have the ability to combat the effects of pathological gene expression in many experimental systems. Thus, nowadays, NABDs are considered to have a great therapeutic potential, possibly superior to that of available drugs. Unfortunately, however, the lack of effective delivery systems limits the practical use of NABDs. Due to their hydrophilic nature, NABDs cannot efficiently cross cellular membrane; in addition, they are subjected to fast degradation by cellular and…

Cellular membranePolymersAntisense oligonucleotides aptamers carbon nanotubes exososomes liposomes miRNA polymers siRNAAptamerClinical BiochemistryNanotechnologyAnimals; Humans; Lipids; Nanoparticles; Nanotubes Carbon; Nucleic Acids; Polymers; Drug Delivery SystemsBiologyNanoparticleDrug Delivery SystemsNucleic AcidsAnimalsHumansAvailable drugsPolymerPharmacologyNanotubesNucleic AcidAnimalNanotubes CarbonCarbon chemistryRNALipidLipidsCarbonSettore CHIM/09 - Farmaceutico Tecnologico ApplicativoAntisense oligonucleotidesNucleic acidNanoparticlesHuman
researchProduct

Characterization of PLLA scaffolds for biomedical applications

2017

The porosity and pore size distribution of three-dimensional scaffolds have direct implications on their biomedical applications (tissue engineering, drug delivery, and wound dressing). Accordingly, in this paper, a fast, facile, and conservative method relying on low-field nuclear magnetic resonance (LF-NMR) for the evaluation of mean pore size and pore size distribution of polymeric scaffolds is reported. The applicability of the technique is demonstrated on poly-L-lactic acid scaffolds fabricated using the thermal induced phase separation. Results obtained through LF-NMR are successfully compared to scanning electron microscope and X-ray microcomputed tomography micrographs.

Pore sizeScaffoldMaterials sciencePolymers and PlasticsGeneral Chemical EngineeringNanotechnology02 engineering and technologyscaffold010402 general chemistry01 natural sciencesPLLAAnalytical ChemistryTissue engineeringpore size distributionChemical Engineering (all)PorositySettore ING-IND/24 - Principi Di Ingegneria Chimicaintegumentary systemLow-field NMR; phase separation; PLLA; pore size distribution; scaffold; Analytical Chemistry; Chemical Engineering (all); Polymers and Plastics021001 nanoscience & nanotechnology0104 chemical sciencesCharacterization (materials science)Settore ING-IND/22 - Scienza E Tecnologia Dei MaterialiWound dressingDrug deliveryphase separation0210 nano-technologyLow-field NMR
researchProduct

Physical characterization of alginate-Pluronic F127 gel for endoluminal NABDs delivery

2014

Here we focus the attention on the physical characteristics of a highly biocompatible hydrogel made up of crosslinked alginate and Pluronic F127 (PF127). This is a composite polymeric blend we propose for artery endoluminal delivery of an emerging class of molecules named nucleic acid based drugs (NABDs). The physical characterization of our composite gel, i.e. mesh size distribution and PF127-alginate mutual organization after crosslinking, can significantly determine the NABDs release kinetics. Thus, to explore these aspects, different technical approaches, i.e. rheology, low/high field NMR and TEM, were used. While rheology provided information at the macroscopic and nano-level, the othe…

Materials sciencegel pavingAlginatesKineticsComposite numberNanotechnologyPoloxamerMicellerestenosisRheologyalginateArterial wallMicellesDrug Carriersgel paving; rheology; NMR; alginate; Pluronic; restenosisGeneral ChemistryPluronicPoloxamerCondensed Matter PhysicsNMRCharacterization (materials science)Chemical engineeringSettore CHIM/09 - Farmaceutico Tecnologico ApplicativoSolute diffusionrheologyNABDs release kinetics PF127 alginate gel paved stent artery endoluminal deliveryGels
researchProduct

Effect of chest physiotherapy on cystic fibrosis sputum nanostructure: an experimental and theoretical approach.

2022

AbstractCystic fibrosis (CF) is a disease characterized by the production of viscous mucoid secretions in multiple organs, particularly the airways. The pathological increase of proteins, mucin and biological polymers determines their arrangement into a three-dimensional polymeric network, affecting the whole mucus and impairing the muco-ciliary clearance which promotes inflammation and bacterial infection. Thus, to improve the efficacy of the drugs usually applied in CF therapy (e.g., mucolytics, anti-inflammatory and antibiotics), an in-depth understanding of the mucus nanostructure is of utmost importance. Drug diffusivity inside a gel-like system depends on the ratio between the diffusi…

Low field NMRCystic FibrosisSputumPharmaceutical ScienceNanostructuresMucusSettore CHIM/09 - Farmaceutico Tecnologico ApplicativoCystic fibrosiMesh size distributionDrug deliveryHumansCystic fibrosis; Drug delivery; Low field NMR; Mesh size distribution; Rheology; SputumRheologyPhysical Therapy ModalitiesDrug delivery and translational research
researchProduct

Antibacterial drug release from a biphasic gel system: Mathematical modelling

2019

Bacterial infections represent an important drawback in the orthopaedic field, as they can develop either immediately after surgery procedures or after some years. Specifically, in case of implants, they are alleged to be troublesome as their elimination often compels a surgical removal of the infected implant. A possible solution strategy could involve a local coating of the implant by an antibacterial system, which requires to be easily applicable, biocompatible and able to provide the desired release kinetics for the selected antibacterial drug. Thus, this work focusses on a biphasic system made up by a thermo-reversible gel matrix (Poloxamer 407/water system) hosting a dispersed phase (…

DrugMaterials sciencemedia_common.quotation_subjectVancomycin HydrochloridePharmaceutical SciencePoloxamer02 engineering and technologyantibacterial drugengineering.material030226 pharmacology & pharmacyDiffusion03 medical and health scienceschemistry.chemical_compoundDrug Delivery Systems0302 clinical medicineMicro-particleCoatingVancomycinAntibacterial drugmedicineAntibacterial drugmedia_commonGelMathematical modellingReproducibility of ResultsMicro-particlesModels Theoretical021001 nanoscience & nanotechnologyAnti-Bacterial AgentsDrug LiberationKineticsPLGAchemistrySettore CHIM/09 - Farmaceutico Tecnologico Applicativoantibacterial drug; Gels; Mathematical modelling; Micro-particles; Orthopaedic implantsPoloxamer 407engineeringOrthopaedic implantsDelivery systemImplant0210 nano-technologyGelsmedicine.drugBiomedical engineeringInternational Journal of Pharmaceutics
researchProduct

Characterization of PLLA scaffolds for biomedical applications

2020

The porosity and pore size distribution of three-dimensional scaffolds have direct implications on their biomedical applications (tissue engineering, drug delivery, and wound dressing). Accordingly, in this paper, a fast, facile, and conservative method relying on low-field nuclear magnetic resonance (LF-NMR) for the evaluation of mean pore size and pore size distribution of polymeric scaffolds is reported. The applicability of the technique is demonstrated on poly-L-lactic acid scaffolds fabricated using the thermal induced phase separation. Results obtained through LF-NMR are successfully compared to scanning electron microscope and X-ray microcomputed tomography micrographs.

researchProduct