0000000001306471

AUTHOR

Rossella Farra

showing 13 related works from this author

Development of a simple, biocompatible and cost-effective Inulin-Diethylenetriamine based siRNA delivery system

2015

Small interfering RNAs (siRNAs) have the potential to be of therapeutic value for many human diseases. So far, however, a serious obstacle to their therapeutic use is represented by the absence of appropriate delivery systems able to protect them from degradation and to allow an efficient cellular uptake. In this work we developed a siRNA delivery system based on inulin (Inu), an abundant and natural polysaccharide. Inu was functionalized via the conjugation with diethylenetriamine (DETA) residues to form the complex Inu-DETA. We studied the size, surface charge and the shape of the Inu-DETA/siRNA complexes; additionally, the cytotoxicity, the silencing efficacy and the cell uptake-mechanis…

3003Small interfering RNAJHH6CellPharmaceutical ScienceEndocytosisCell LineIn vivoCell Line TumormedicinePolyaminesGene silencingHumansMicropinocytosisRNA Small InterferingCytotoxicityChemistry16HBEInulinEndocytosisDiethylenetriamine (DETA)Cell biologyInu-DETA copolymermedicine.anatomical_structureBiochemistryCytoplasmSettore CHIM/09 - Farmaceutico Tecnologico ApplicativosiRNA16HBE; Diethylenetriamine (DETA); Inu-DETA copolymer; Inulin; JHH6; siRNA; 3003E2F1 Transcription Factor
researchProduct

Current strategies to improve the efficacy and the delivery of nucleic acid based drugs

2010

EndocrinologyChemistrySettore CHIM/09 - Farmaceutico Tecnologico ApplicativoNucleic acid based drugs drug delivery gene therapyNABD deliveryNucleic acidPharmacology (medical)Computational biologyCurrent (fluid)
researchProduct

Guar gum/borax hydrogel: Rheological, low field NMR and release characterizations

2013

Guar gum (GG) and Guar gum/borax (GGb) hydrogels are studied by means of rheology, Low Field Nuclear Magnetic Resonance (LF NMR) and model drug release tests. These three approaches are used to estimate the mesh size (ζ) of the polymeric network. A comparison with similar Scleroglucan systems is carried out. In the case of GGb, the rheological and Low Field NMR estimations of ζ lead to comparable results, while the drug release approach seems to underestimate ζ. Such discrepancy is attributed to the viscous effect of some polymeric chains that, although bound to the network to one end, can freely fluctuate among meshes. The viscous drag exerted by these chains slows down drug…

Low field NMRMaterials sciencePolymers and PlasticsField (physics)General Chemical EngineeringDiffusionTransport processeslcsh:Chemical technologyPolymer Gels; Rheology; Low Field NMR; Transport processes; Mesh-sizechemistry.chemical_compoundRheologylcsh:TA401-492Materials ChemistryPolymer Gellcsh:TP1-1185Physical and Theoretical ChemistryComposite materialTransport processeGuar gumBoraxPolymer gelsOrganic ChemistryMesh-sizeLow field nuclear magnetic resonanceLow Field NMRlow field nmr; mesh-size; polymer gels; rheology; transport processesChemical engineeringchemistrySettore CHIM/09 - Farmaceutico Tecnologico ApplicativoSelf-healing hydrogelsViscous effectlcsh:Materials of engineering and construction. Mechanics of materialsRheologyExpress Polymer Letters
researchProduct

Galactosylated polyaspartamide copolymers for siRNA targeted delivery to hepatocellular carcinoma cells

2017

The limited efficacy of available treatments for hepatocellular carcinoma (HCC) requires the development of novel therapeutic approaches. We synthesized a novel cationic polymer based on α,β-poly-(N-2-hydroxyethyl)-D,L-aspartamide (PHEA) for drug delivery to HCC cells. The copolymer was synthesized by subsequent derivatization of PHEA with diethylene triamine (DETA) and with a polyethylene glycol (PEG) derivative bearing galactose (GAL) molecules, obtaining the cationic derivative PHEA-DETA-PEG-GAL. PHEA-DETA-PEG-GAL has suitable chemical-physical characteristics for a potential systemic use and can effectively deliver a siRNA (siE2F1) targeted against the transcription factor E2F1, a gen…

Polyplexes HCC siRNA E2F1 PHEA-DETA-PEG-GALCarcinoma HepatocellularPolymersPharmaceutical ScienceE2F1; HCC; PHEA-DETA-PEG-GAL; Polyplexes; siRNA.02 engineering and technologyPolyethylene glycol03 medical and health scienceschemistry.chemical_compound0302 clinical medicineCell Line TumorPEG ratiomedicineHumansE2F1Gene silencingGene SilencingRNA Small InterferingHCCReceptorCell growthChemistryLiver NeoplasmssiRNA.021001 nanoscience & nanotechnologymedicine.diseaseMolecular biologyPHEA-DETA-PEG-GALPolyplexeE2F1030220 oncology & carcinogenesisHepatocellular carcinomasiRNADrug deliveryCancer researchPeptides0210 nano-technologyE2F1 Transcription FactorPolyplexes
researchProduct

Novel Lipid and Polymeric Materials as Delivery Systems for Nucleic Acid Based Drugs

2015

Nucleic acid based drugs (NADBs) are short DNA/RNA molecules that include among others, antisense oligonucleotides, aptamers, small interfering RNAs and micro-interfering RNAs. Despite the different mechanisms of actions, NABDs have the ability to combat the effects of pathological gene expression in many experimental systems. Thus, nowadays, NABDs are considered to have a great therapeutic potential, possibly superior to that of available drugs. Unfortunately, however, the lack of effective delivery systems limits the practical use of NABDs. Due to their hydrophilic nature, NABDs cannot efficiently cross cellular membrane; in addition, they are subjected to fast degradation by cellular and…

Cellular membranePolymersAntisense oligonucleotides aptamers carbon nanotubes exososomes liposomes miRNA polymers siRNAAptamerClinical BiochemistryNanotechnologyAnimals; Humans; Lipids; Nanoparticles; Nanotubes Carbon; Nucleic Acids; Polymers; Drug Delivery SystemsBiologyNanoparticleDrug Delivery SystemsNucleic AcidsAnimalsHumansAvailable drugsPolymerPharmacologyNanotubesNucleic AcidAnimalNanotubes CarbonCarbon chemistryRNALipidLipidsCarbonSettore CHIM/09 - Farmaceutico Tecnologico ApplicativoAntisense oligonucleotidesNucleic acidNanoparticlesHuman
researchProduct

Characterization of PLLA scaffolds for biomedical applications

2017

The porosity and pore size distribution of three-dimensional scaffolds have direct implications on their biomedical applications (tissue engineering, drug delivery, and wound dressing). Accordingly, in this paper, a fast, facile, and conservative method relying on low-field nuclear magnetic resonance (LF-NMR) for the evaluation of mean pore size and pore size distribution of polymeric scaffolds is reported. The applicability of the technique is demonstrated on poly-L-lactic acid scaffolds fabricated using the thermal induced phase separation. Results obtained through LF-NMR are successfully compared to scanning electron microscope and X-ray microcomputed tomography micrographs.

Pore sizeScaffoldMaterials sciencePolymers and PlasticsGeneral Chemical EngineeringNanotechnology02 engineering and technologyscaffold010402 general chemistry01 natural sciencesPLLAAnalytical ChemistryTissue engineeringpore size distributionChemical Engineering (all)PorositySettore ING-IND/24 - Principi Di Ingegneria Chimicaintegumentary systemLow-field NMR; phase separation; PLLA; pore size distribution; scaffold; Analytical Chemistry; Chemical Engineering (all); Polymers and Plastics021001 nanoscience & nanotechnology0104 chemical sciencesCharacterization (materials science)Settore ING-IND/22 - Scienza E Tecnologia Dei MaterialiWound dressingDrug deliveryphase separation0210 nano-technologyLow-field NMR
researchProduct

Recent advances in smart biotechnology: Hydrogels and nanocarriers for tailored bioactive molecules depot

2017

Over the past ten years, the global biopharmaceutical market has remarkably grown, with ten over the top twenty worldwide high performance medical treatment sales being biologics. Thus, biotech R&D (research and development) sector is becoming a key leading branch, with expanding revenues. Biotechnology offers considerable advantages compared to traditional therapeutic approaches, such as reducing side effects, specific treatments, higher patient compliance and therefore more effective treatments leading to lower healthcare costs. Within this sector, smart nanotechnology and colloidal self-assembling systems represent pivotal tools able to modulate the delivery of therapeutics. A comprehens…

Bioactive molecules02 engineering and technologyHepatocellular-carcinoma cells01 natural sciencesMiceColloid and Surface ChemistryDrug Delivery SystemsCarbon nano materialNanotechnologyMolecular Targeted TherapyTransgenesRNA Small InterferingPatient complianceTransfer radical polymerizationMicro/nanocarrierMedical treatmentMicro/nanocarriersBioactive molecule deliveryHydrogelsSurfaces and Interfaces021001 nanoscience & nanotechnologyLiposomeBiopharmaceuticalOral deliverySelf-healing hydrogelsIntercellular Signaling Peptides and Proteins0210 nano-technologyAssembling peptide hydrogelsSurfaces and InterfaceNucleic-acid deliveryPlasmidsDiagnostic ImagingSolid lipid nanoparticlesNanotechnology010402 general chemistryAntibodiesSmall Molecule LibrariesCarbon nano-onionsIn-vivoAnimalsHumansPhysical and Theoretical Chemistrybusiness.industryDrug-delivery0104 chemical sciencesBiotechnologyHydrogelSettore CHIM/09 - Farmaceutico Tecnologico ApplicativoMolecular ProbesBioactive molecule delivery; Carbon nano materials; Hydrogels; Liposomes; Micro/nanocarriers; Surfaces and Interfaces; Physical and Theoretical Chemistry; Colloid and Surface ChemistryLiposomesNonviral gene deliveryCarbon nano materialsNanoparticlesBusinessNanocarriers
researchProduct

Modulating carbohydrate-based hydrogels as viscoelastic lubricant substitute for articular cartilages

2017

Viscosupplementation is a therapeutic approach for osteoarthritis treatment, where the synovial fluid, the natural lubricant of the joints, is replaced by viscoelastic solutions with rheological properties comparable or better than the starting material. This study presents the development of an innovative platform for viscosupplementation, based on the optimization of polysaccharide-based colloidal hydrogel, aiming to reduce on-site enzyme degradation and enhance the possibility of hyaluronic acid substitution with alternative biomaterials. Catanionic vesicles are proposed as physical crosslinker that can guarantee the formation of a 'soft', tunable network, offering a dual-therapeutic app…

Cartilage ArticularMaterials scienceNanotechnology02 engineering and technology010402 general chemistry01 natural sciencesBiochemistryViscoelasticityCryo-SEMViscosupplementationchemistry.chemical_compoundRheologyBiomimetic MaterialsPolysaccharidesStructural BiologySynovial FluidHyaluronic acidLubricantMolecular BiologyCatanionic vesicles; Colloidal hydrogel; Cryo-SEM; Modified cellulose; Viscosupplementation; Structural Biology; Biochemistry; Molecular Biologychemistry.chemical_classificationCatanionic vesiclesViscosityHydrogelsGeneral MedicinePolymerColloidal hydrogelModified cellulose021001 nanoscience & nanotechnologyCatanionic vesicleElasticity0104 chemical scienceschemistrySettore CHIM/09 - Farmaceutico Tecnologico ApplicativoSelf-healing hydrogelsViscosupplementationViscoelastic Solutions0210 nano-technology
researchProduct

Physical characterization of alginate-Pluronic F127 gel for endoluminal NABDs delivery

2014

Here we focus the attention on the physical characteristics of a highly biocompatible hydrogel made up of crosslinked alginate and Pluronic F127 (PF127). This is a composite polymeric blend we propose for artery endoluminal delivery of an emerging class of molecules named nucleic acid based drugs (NABDs). The physical characterization of our composite gel, i.e. mesh size distribution and PF127-alginate mutual organization after crosslinking, can significantly determine the NABDs release kinetics. Thus, to explore these aspects, different technical approaches, i.e. rheology, low/high field NMR and TEM, were used. While rheology provided information at the macroscopic and nano-level, the othe…

Materials sciencegel pavingAlginatesKineticsComposite numberNanotechnologyPoloxamerMicellerestenosisRheologyalginateArterial wallMicellesDrug Carriersgel paving; rheology; NMR; alginate; Pluronic; restenosisGeneral ChemistryPluronicPoloxamerCondensed Matter PhysicsNMRCharacterization (materials science)Chemical engineeringSettore CHIM/09 - Farmaceutico Tecnologico ApplicativoSolute diffusionrheologyNABDs release kinetics PF127 alginate gel paved stent artery endoluminal deliveryGels
researchProduct

Synthesis and characterization of polyaspartamide copolymers obtained by ATRP for nucleic acid delivery

2014

Abstract Nucleic acid molecules such as small interfering RNAs (siRNAs) and plasmidic DNAs (pDNAs) have been shown to have the potential to be of therapeutic value in different human diseases. Their practical use is however compromised by the lack of appropriate release systems. Delivered as naked molecules, siRNAs/pDNAs are rapidly degraded by extracellular nucleases thus considerably reducing the amount of molecule which can reach the target cells. Additionally, the anionic charge of the phosphate groups present on the siRNAs/pDNAs backbone, disfavors the interaction with the negatively charged surface of the cell membrane. In this paper we describe the generation of a novel polymer able …

Small interfering RNACell SurvivalPharmaceutical ScienceATRPMethacrylateTransfectionsiRNA; deliveryPolymerizationchemistry.chemical_compoundMiceSiRNA delivery; DNA delivery; Polyaspartamide; ATRPCell Line TumorPolymer chemistryCopolymerAnimalsHumansRNA MessengerRNA Small Interferingchemistry.chemical_classificationAtom-transfer radical-polymerizationPolymerDNACombinatorial chemistryPolyaspartamideMonomerchemistryPolymerizationsiRNANucleic acidSiRNA deliveryMethacrylatesdeliveryPeptidesE2F1 Transcription FactorDNA deliveryPlasmids
researchProduct

Effect of chest physiotherapy on cystic fibrosis sputum nanostructure: an experimental and theoretical approach.

2022

AbstractCystic fibrosis (CF) is a disease characterized by the production of viscous mucoid secretions in multiple organs, particularly the airways. The pathological increase of proteins, mucin and biological polymers determines their arrangement into a three-dimensional polymeric network, affecting the whole mucus and impairing the muco-ciliary clearance which promotes inflammation and bacterial infection. Thus, to improve the efficacy of the drugs usually applied in CF therapy (e.g., mucolytics, anti-inflammatory and antibiotics), an in-depth understanding of the mucus nanostructure is of utmost importance. Drug diffusivity inside a gel-like system depends on the ratio between the diffusi…

Low field NMRCystic FibrosisSputumPharmaceutical ScienceNanostructuresMucusSettore CHIM/09 - Farmaceutico Tecnologico ApplicativoCystic fibrosiMesh size distributionDrug deliveryHumansCystic fibrosis; Drug delivery; Low field NMR; Mesh size distribution; Rheology; SputumRheologyPhysical Therapy ModalitiesDrug delivery and translational research
researchProduct

Targeted delivery of siRNAs against hepatocellular carcinoma-related genes by a galactosylated polyaspartamide copolymer

2021

Given the lack of effective treatments for Hepatocellular carcinoma (HCC), the development of novel therapeutic approaches is very urgent. Here, siRNAs were delivered to HCC cells by a synthetic polymer containing α,β-poly-(N-2-hydroxyethyl)-D,L-aspartamide-(PHEA) derivatized with diethylene triamine (DETA) and bearing in the side chain galactose (GAL) linked via a polyethylene glycol (PEG) to obtain (PHEA-DETA-PEG-GAL, PDPG). The GAL residue allows the targeting to the asialo-glycoprotein receptor (ASGPR), overexpressed in HCC cells compared to normal hepatocytes. Uptake studies performed using a model siRNA or a siRNA targeted against the enhanced green fluorescence protein, demonstrated …

Small interfering RNACarcinoma HepatocellularPolymersHepatocellular carcinomaCellASGPR targeted delivery; E2F1; Eukaryotic elongation Factor 1A; Hepatocellular carcinoma; siRNAPharmaceutical Science02 engineering and technologyEukaryotic elongation Factor 1AMice03 medical and health sciencesIn vivomedicineAnimalsE2F1RNA Small InterferingReceptor030304 developmental biology0303 health sciencesChemistryLiver NeoplasmsASGPR targeted deliveryGalactose021001 nanoscience & nanotechnologymedicine.diseasedigestive system diseasesEukaryotic translation elongation factor 1 alpha 1In vitromedicine.anatomical_structureE2F1Settore CHIM/09 - Farmaceutico Tecnologico ApplicativoHepatocellular carcinomasiRNACancer research0210 nano-technology
researchProduct

Characterization of PLLA scaffolds for biomedical applications

2020

The porosity and pore size distribution of three-dimensional scaffolds have direct implications on their biomedical applications (tissue engineering, drug delivery, and wound dressing). Accordingly, in this paper, a fast, facile, and conservative method relying on low-field nuclear magnetic resonance (LF-NMR) for the evaluation of mean pore size and pore size distribution of polymeric scaffolds is reported. The applicability of the technique is demonstrated on poly-L-lactic acid scaffolds fabricated using the thermal induced phase separation. Results obtained through LF-NMR are successfully compared to scanning electron microscope and X-ray microcomputed tomography micrographs.

researchProduct