0000000001307826
AUTHOR
Alejandro Pascual-álvarez
Magneto-structural correlations in Ni(ii) [2 × 2] metallogrids featuring a variable number of μ-aquo or μ-hydroxo extra bridges
Four new [2 × 2] grid-type metallosupramolecular species have been obtained by using the ditopic 3,6-bis(2′-pyridyl)pyridazine ligand (dppn) and nickel(II) salts containing poorly coordinating anions. Three of them have the formula [Ni4(μ-dppn)4(μ-OH)2(μ-H2O)2]X6·nH2O [with X = ClO4− (1), NO3− (2) and CF3SO3− (3), and n = 6.5 (1), 14 (2) and 4 (3)]. Their crystal structure shows the same tetranuclear core, constituted by four six-coordinate metal ions and four dppn molecules. Two hydroxo groups and two water molecules efficiently interact forming two hydrated hydroxide (H3O2−) supramolecular bridging anions, further stabilizing the grid. The other compound, [Ni4(μ-dppn)4(μ-OH)3(μ-H2O)](ClO4…
Mixed-ligand copper(ii)–sulfonamide complexes: effect of the sulfonamide derivative on DNA binding, DNA cleavage, genotoxicity and anticancer activity
Four ternary complexes, [Cu(L1)2(bipy)] (1) [HL1 = N-(6-chlorobenzo[d]thiazol-2-yl)-4-methylbenzenesulfonamide], [Cu(L2)2(bipy)] (2) [HL2 = N-(benzo[d]thiazol-2-yl)-4-methylbenzenesulfonamide], [Cu(L3)2(bipy)]·1/2H2O (3) [HL3 = N-(5,6-dimethylbenzo[d]thiazol-2-yl)-4-methylbenzenesulfonamide] and [Cu(L4)2(bipy)] (4) [HL4 = N-(5,6-dimethylbenzo[d]thiazol-2-yl)benzenesulfonamide], were prepared and then characterized by X-ray crystallography, spectroscopy and magnetic measurements. Whereas the molecular structure of 1 and 2 consists of a discrete monomeric copper(II) species with a distorted square planar geometry, that of 3 and 4 consists of two independent molecules. In 3, both molecules pre…
Field-Induced Hysteresis and Quantum Tunneling of the Magnetization in a Mononuclear Manganese(III) Complex
International audience
Facile immobilization of copper(I) acetate on silica: A recyclable and reusable heterogeneous catalyst for azide–alkyne clickable cycloaddition reactions
Abstract The structurally well-defined copper(I) acetate was immobilized on silica gel via electrostatic interactions. The catalytic activity of the immobilized catalyst Cu(I)–SiO2 was examined in the click synthesis of 1,2,3-triazoles in water/ethanol at room temperature. The catalyst showed high catalytic activity and regioselectivity for the Huisgen [3+2] cycloaddition reaction between terminal alkynes and azides. The catalyst was recovered by simple filtration and reused for up to five times. The analysis of the local electrophilicity/nucleophilicity has been performed on the dinuclear copper–acetylide complex intermediate. Conceptual DFT (CDFT) analysis enabled the explanation of the f…
One-dimensional oxalato-bridged heterobimetallic coordination polymers by using [the [Cr(pyim)(C2O4)2]− complex as metalloligand [pyim = 2-(2′-pyridyl)imidazole]
Abstract Four new coordination polymers based on the use of the [Cr(pyim)(C2O4)2]− species as a metalloligand, namely [LiCr(pyim)(C2O4)2(MeOH)]n (1), {[CaCr2(pyim)2(C2O4)4]·2MeOH}n (2), {[SrCr2(pyim)2(C2O4)4(H2O)]·0.45MeOH·4.55H2O}n (3) and {[CdCr2(pyim)2(C2O4)4]·MeOH}n (4) [pyim = 2-(2′-pyridyl)imidazole] have been synthesized and characterized by elemental analyses, IR spectra and X-ray diffraction on single crystals. Complex 1 is a neutral heterobimetallic chain where the tris(chelated) chromium(III) unit acts as a bis-bidentate ligand towards {Li(MeOH)}+ fragments through its two oxalate ligands, each lithium ion being five-coordinate in a intermediate surrounding between square pyramid…
A reusable polymer-supported copper(I) catalyst for triazole click reaction on water: An experimental and computational study
Cover Picture: Solid-State Molecular Nanomagnet Inclusion into a Magnetic Metal-Organic Framework: Interplay of the Magnetic Properties (Chem. Eur. J. 2/2016)
Field-Induced Slow Magnetic Relaxation in a Mononuclear Manganese(III)-Porphyrin Complex
We report on a novel manganese(III)-porphyrin complex with the formula [Mn(III) (TPP)(3,5-Me2 pyNO)2 ]ClO4 ⋅CH3 CN (2; 3,5-Me2 pyNO=3,5-dimethylpyridine N-oxide, H2 TPP=5,10,15,20-tetraphenylporphyrin), in which the Mn(III) ion is six-coordinate with two monodentate 3,5-Me2 pyNO molecules and a tetradentate TPP ligand to build a tetragonally elongated octahedral geometry. The environment in 2 is responsible for the large and negative axial zero-field splitting (D=-3.8 cm(-1) ), low rhombicity (E/|D|=0.04) of the high-spin Mn(III) ion, and, ultimately, for the observation of slow magnetic-relaxation effects (Ea =15.5 cm(-1) at H=1000 G) in this rare example of a manganese-based single-ion ma…
Solid-State Molecular Nanomagnet Inclusion into a Magnetic Metal-Organic Framework: Interplay of the Magnetic Properties.
Single-ion magnets (SIMs) are the smallest possible magnetic devices and are a controllable, bottom-up approach to nanoscale magnetism with potential applications in quantum computing and high-density information storage. In this work, we take advantage of the promising, but yet insufficiently explored, solid-state chemistry of metal-organic frameworks (MOFs) to report the single-crystal to single-crystal inclusion of such molecular nanomagnets within the pores of a magnetic MOF. The resulting host-guest supramolecular aggregate is used as a playground in the first in-depth study on the interplay between the internal magnetic field created by the long-range magnetic ordering of the structur…
Magnetic order in a CuII–DyIII oxamato-based two-dimensional coordination polymer
Abstract We report the synthesis, crystal structure, and magnetic characterization of a novel two-dimensional copper(II)–dysprosium(III) coordination polymer of formula [LiI(OH2)4]2[DyIIICuII2(Me2pma)4Cl(H2O)] . 4H2O (1) [Me2pma = N-2,6-dimethylphenyloxamate]. Compound 1 was obtained using the mononuclear anionic complex [CuII(Me2pma)2]2–, as a bis(bidentate) metalloligand toward solvated dysprosium(III) cations, and it shows a square [DyIIICuII2] layered structure of (44.62) net topology. Interestingly, the combination of two factors, the well-known efficiency of oxamato ligands to transmit strong magnetic couplings between neighboring atoms and such structural topology, is responsible for…
Photoinduced and Self‐Activated Nuclease Activity of Copper(II) Complexes with N ‐(Quinolin‐8‐yl)quinolin‐8‐sulfonamide – DNA and Bovine Serum Albumin Binding
Two CuII complexes with a new quinoline sulfonamide derivative and phenanthroline (phen), [Cu(QSQ)(phen)]ClO4·0.5H2O (1) and [Cu(QSQ)(phen)(H2O)]ClO4 (2) [HQSQ = N-(quinolin-8-yl)quinolin-8-sulfonamide], have been synthesized and physicochemically characterized. Single-crystal X-ray diffraction studies have revealed a highly distorted trigonal-bipyramidal structure for 1 (τ = 0.68) and an almost perfect trigonal-bipyramidal geometry for 2 (τ = 0.92). DNA binding studies, which were performed by thermal denaturation, viscometry, fluorescence spectroscopy, and cyclic voltammetry, indicated a partial intercalation of 1 with Kapp = 2.45 × 106 M–1. The nuclease activity of 1 was investigated upo…
CCDC 1874222: Experimental Crystal Structure Determination
Related Article: Nadia Marino, Rosaria Bruno, Abdeslem Bentama, Alejandro Pascual-Álvarez, Francesc Lloret, Miguel Julve, Giovanni De Munno|2019|CrystEngComm|21|917|doi:10.1039/C8CE01894D
CCDC 1407215: Experimental Crystal Structure Determination
Related Article: Alejandro Pascual-Álvarez, Tamara Topala, Francisco Estevan, Francisca Sanz and Gloria Alzuet-Piña|2016|Eur.J.Inorg.Chem.||982|doi:10.1002/ejic.201501469
CCDC 1868872: Experimental Crystal Structure Determination
Related Article: Nadia Marino, Rosaria Bruno, Abdeslem Bentama, Alejandro Pascual-Álvarez, Francesc Lloret, Miguel Julve, Giovanni De Munno|2019|CrystEngComm|21|917|doi:10.1039/C8CE01894D
CCDC 1063253: Experimental Crystal Structure Determination
Related Article: Alejandro Pascual-Álvarez, Julia Vallejo, Emilio Pardo, Miguel Julve, Francesc Lloret, J. Krzystek, Donatella Armentano, Wolfgang Wernsdorfer, Joan Cano|2015|Chem.-Eur.J.|21|17299|doi:10.1002/chem.201502637
CCDC 1868871: Experimental Crystal Structure Determination
Related Article: Nadia Marino, Rosaria Bruno, Abdeslem Bentama, Alejandro Pascual-Álvarez, Francesc Lloret, Miguel Julve, Giovanni De Munno|2019|CrystEngComm|21|917|doi:10.1039/C8CE01894D
CCDC 1414395: Experimental Crystal Structure Determination
Related Article: Marta Mon, Alejandro Pascual-Álvarez, Thais Grancha, Joan Cano, Jesús Ferrando-Soria, Francesc Lloret, Jorge Gascon, Jorge Pasán, Donatella Armentano, Emilio Pardo|2016|Chem.-Eur.J.|22|539|doi:10.1002/chem.201504176
CCDC 1891550: Experimental Crystal Structure Determination
Related Article: Alejandro Pascual-Álvarez, Joan Cano, Francesc Lloret, Jesús Ferrando-Soria, Donatella Armentano, Emilio Pardo|2019|Comptes Rendus Chimie|22|466|doi:10.1016/j.crci.2019.05.006
CCDC 1868873: Experimental Crystal Structure Determination
Related Article: Nadia Marino, Rosaria Bruno, Abdeslem Bentama, Alejandro Pascual-Álvarez, Francesc Lloret, Miguel Julve, Giovanni De Munno|2019|CrystEngComm|21|917|doi:10.1039/C8CE01894D
CCDC 1868874: Experimental Crystal Structure Determination
Related Article: Nadia Marino, Rosaria Bruno, Abdeslem Bentama, Alejandro Pascual-Álvarez, Francesc Lloret, Miguel Julve, Giovanni De Munno|2019|CrystEngComm|21|917|doi:10.1039/C8CE01894D
CCDC 1407214: Experimental Crystal Structure Determination
Related Article: Alejandro Pascual-Álvarez, Tamara Topala, Francisco Estevan, Francisca Sanz and Gloria Alzuet-Piña|2016|Eur.J.Inorg.Chem.||982|doi:10.1002/ejic.201501469