0000000001307902
AUTHOR
Florian Menk
Living Light-Induced Crystallization-Driven Self-Assembly for Rapid Preparation of Semiconducting Nanofibers.
Well-defined nanostructures composed of conjugated polymers have attracted significant attention due to their intriguing electronic and optical properties. However, precise control of the size and uniformity of these semiconducting nanostructures is still rare and challenging, despite recent advances in strategies to obtain self-assembled nanostructures with narrow dispersions. Herein, we demonstrate the preparation of fluorescent conjugated block copolymers by one-shot polymerization and rapid formation of nanofibers in a few minutes via light-induced crystallization-driven self-assembly, driven by facile cis-to- trans photoisomerization of its poly( p-phenylenevinylene) blocks. Furthermor…
Functionalization of P3HT with Various Mono- and Multidentate Anchor Groups
Due to its favorable optoelectronic properties and the accessibility via Grignard metathesis (GRIM) polymerization, poly(3-hexylthiophene) (P3HT) is one of the most applied conjugated polymers. The ‘living' nature of GRIM polymerization enables the modification of the polymer and the installation of desired properties. In the present study, two versatile approaches for the synthesis of anchor group-modified P3HT have been developed, which enable the functionalization of various inorganic nanoparticles. Depending on the polymerization conditions, mono- and bifunctional ethynyl-terminated P3HT or solely monofunctionalized aldehyde-terminated P3HT was synthesized. Afterwards, the quantitative …
Colloidal Nanoplatelet/Conducting Polymer Hybrids: Excitonic And Material Properties
WOS:000370678700053 Here we present the first account of conductive polymer/colloidal nanoplatelet hybrids. For this, we developed DEH-PPV-based polymers with two different anchor groups (sulfide and amine) acting as surfactants for CdSe nanoplatelets, which are atomically flat semiconductor nanocrystals. Hybridization of the polymers with the nanoplatelets in the solution phase was observed to cause strong photoluminescence quenching in both materials. Through steady-state photoluminescence and excitation spectrum measurements, photoluminescence quenching was shown to result from dominant exciton dissociation through charge transfer at the polymer/nanoplatelet interfaces that possess a sta…
Synthesis of Functional Block Copolymers Carrying One Poly(p-phenylenevinylene) and One Nonconjugated Block in a Facile One-Pot Procedure
Block copolymers composed of a MEH–PPV block and a nonconjugated functional block (molecular weights between 5 and 90 kg/mol) were synthesized in a facile one-pot procedure via ROMP. This one-pot procedure permits the synthesis of numerous block copolymers with little effort. Amphiphilic block copolymers were obtained via incorporation of oxanorbornene carrying a PEG side chain as well as via postpolymerization modification of a reactive ester carrying norbornene derivative with methoxypoly(ethylene glycol)amine. These amphiphilic block copolymers can be self-assembled into micelles exhibiting different sizes (60–95 nm), morphologies (micelles or fused, caterpillar-like micelles), and optic…
Functionalization of P3HT with Various Mono- and Multidentate Anchor Groups
Due to its favorable optoelectronic properties and the accessibility via Grignard metathesis (GRIM) polymerization, poly(3-hexylthiophene) (P3HT) is one of the most applied conjugated polymers. The ‘living' nature of GRIM polymerization enables the modification of the polymer and the installation of desired properties. In the present study, two versatile approaches for the synthesis of anchor group-modified P3HT have been developed, which enable the functionalization of various inorganic nanoparticles. Depending on the polymerization conditions, mono- and bifunctional ethynyl-terminated P3HT or solely monofunctionalized aldehyde-terminated P3HT was synthesized. Afterwards, the quantitative …