6533b82cfe1ef96bd128ff16
RESEARCH PRODUCT
Colloidal Nanoplatelet/Conducting Polymer Hybrids: Excitonic And Material Properties
Yusuf KelestemurHilmi Volkan DemirHilmi Volkan DemirKai PhilippsRudolf ZentelMurat OlutasMurat OlutasBurak GuzelturkFlorian Menksubject
Excitation spectrumMaterials sciencePhotoluminescenceSulfideDEH-PPV-Based PolymersSulfideExcitonCdSe NanoplateletsNanotechnology02 engineering and technologySurface active agents010402 general chemistryOptoelectronic devices01 natural sciencesDissociation (chemistry)ColloidCharge transferQuenchingHybrid optoelectronic devicesPhysical and Theoretical ChemistryPhotoluminescenceSulfur compoundsAmineSemiconductor nanocrystalsConductive polymerchemistry.chemical_classificationExcited statesBuilding blockesPolymerInterface statesEmission quenching021001 nanoscience & nanotechnology0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsPolymer/Colloidal Nanoplatelet HybridsGeneral EnergyChemical engineeringchemistryExcited stateAnchorsExcitons0210 nano-technologyDissociationConductive polymerPhotoluminescence quenchingExciton dissociationdescription
WOS:000370678700053 Here we present the first account of conductive polymer/colloidal nanoplatelet hybrids. For this, we developed DEH-PPV-based polymers with two different anchor groups (sulfide and amine) acting as surfactants for CdSe nanoplatelets, which are atomically flat semiconductor nanocrystals. Hybridization of the polymers with the nanoplatelets in the solution phase was observed to cause strong photoluminescence quenching in both materials. Through steady-state photoluminescence and excitation spectrum measurements, photoluminescence quenching was shown to result from dominant exciton dissociation through charge transfer at the polymer/nanoplatelet interfaces that possess a staggered (i.e., type II) band alignment. Importantly, we found out that sulfide-based anchors enable a stronger emission quenching than amine-based ones, suggesting that the sulfide anchors exhibit more efficient binding to the nanoplatelet surfaces. Also, shorter surfactants were found to be more effective for exciton dissociation as compared to the longer ones. In addition, we show that nanoplatelets are homogeneously distributed in the hybrid films owing to the functional polymers. These nanocomposites can be used as building blocks for hybrid optoelectronic devices, such as solar cells.
year | journal | country | edition | language |
---|---|---|---|---|
2016-02-04 |