0000000001309012
AUTHOR
Pilar Ocón
Reversible stimulus-responsive Cu(i) iodide pyridine coordination polymer
We present a structurally flexible copper–iodide–pyridine-based coordination polymer showing drastic variations in its electrical conductivity driven by temperature and sorption of acetic acid molecules. The dramatic effect on the electrical conductivity enables the fabrication of a simple and robust device for gas detection. X-ray diffraction studies and DFT calculations allow the rationalisation of these observations.
Halo and Pseudohalo Cu(I)-Pyridinato Double Chains with Tunable Physical Properties
The properties recently reported on the Cu(I)-iodide pyrimidine nonporous 1D-coordination polymer [CuI(ANP)] (ANP = 2-amino-5-nitropyridine) showing reversible physically and chemically driven electrical response have prompted us to carry a comparative study with the series of [CuX(ANP)] (X = Cl (1), X = Br (2), X = CN (4), and X = SCN (5)) in order to understand the potential influence of the halide and pseudohalide bridging ligands on the physical properties and their electrical response to vapors of these materials. The structural characterization of the series shows a common feature, the presence of -X-Cu(ANP)-X- (X = Cl, Br, I, SCN) double chain structure. Complex [Cu(ANP)(CN)] (4) pre…
Synthesis, structural characterization and electrochemical and magnetic studies of M(hfac)2 (M = CuII, CoII) and Nd(hfac)3 complexes of 4-amino-TEMPO
Three mononuclear complexes [M(hfac)x(ATEMPO)y], where M = Cu (11) and Co (12), x = y = 2; M = Nd (13), x = 4, y = 1, and two polynuclear complexes [{Cu(hfac)2(ATEMPO)}n], where n = 2 (14) and 4 (15), were obtained by the reaction of M(hfac)x (M = CuII, CoII, NdIII; x = 2, 3) with 4-amino-TEMPO (4-amino-2,2,6,6-tetramethylpiperidin-N-oxyl) in good yields and their structural, electrochemical and magnetic properties were examined. In all cases, the radical is coordinated to the metal through the amino group, except 15, and the metal ions have an octahedral geometry, except 13. Different coordination architectures of the copper complexes were obtained as a function of the stoichiometry and so…
CCDC 1978264: Experimental Crystal Structure Determination
Related Article: Yolanda Navarro, Guilherme P. Guedes, Joan Cano, Pilar Ocón, María José Iglesias, Francisco Lloret, Fernando López-Ortiz|2020|Dalton Trans.|49|6280|doi:10.1039/D0DT00541J
CCDC 1978261: Experimental Crystal Structure Determination
Related Article: Yolanda Navarro, Guilherme P. Guedes, Joan Cano, Pilar Ocón, María José Iglesias, Francisco Lloret, Fernando López-Ortiz|2020|Dalton Trans.|49|6280|doi:10.1039/D0DT00541J
CCDC 1978263: Experimental Crystal Structure Determination
Related Article: Yolanda Navarro, Guilherme P. Guedes, Joan Cano, Pilar Ocón, María José Iglesias, Francisco Lloret, Fernando López-Ortiz|2020|Dalton Trans.|49|6280|doi:10.1039/D0DT00541J
CCDC 1978262: Experimental Crystal Structure Determination
Related Article: Yolanda Navarro, Guilherme P. Guedes, Joan Cano, Pilar Ocón, María José Iglesias, Francisco Lloret, Fernando López-Ortiz|2020|Dalton Trans.|49|6280|doi:10.1039/D0DT00541J
CCDC 1978260: Experimental Crystal Structure Determination
Related Article: Yolanda Navarro, Guilherme P. Guedes, Joan Cano, Pilar Ocón, María José Iglesias, Francisco Lloret, Fernando López-Ortiz|2020|Dalton Trans.|49|6280|doi:10.1039/D0DT00541J