0000000001309432

AUTHOR

Joris Van Slageren

showing 14 related works from this author

Synthesis, structural characterization and magnetic behaviour of a family of [CoIII2LnIII2] butterfly compounds

2017

We have successfully prepared and structurally characterized a family of butterfly-like [Co2 IIILn2 III] complexes where all magnetic properties are due to the Ln(iii) ions. The complexes with Ln = Tb(1), Dy(2), Ho(3), Er(4) and Yb(5) are iso-structural. An exception is the complex with Ln = Gd(6) which strings in a one dimensional chain. The structural similarity together with the high tendency of the crystallites to align under an applied magnetic field allowed an overall DC magnetic data treatment to extract phenomenological crystal field parameters and hence to determine the ground state multiplet energy level splitting. The Dy(iii) member is the only one showing slow relaxation of magn…

Field (physics)010405 organic chemistryChemistryOtras Ciencias QuímicasEnergy level splittingRelaxation (NMR)Ciencias Químicas010402 general chemistry01 natural sciences0104 chemical sciencesMagnetic fieldInorganic ChemistryCrystalMagnetizationCrystallographyNuclear magnetic resonanceCrystalliteno correspondeGround stateCIENCIAS NATURALES Y EXACTASDalton Transactions
researchProduct

Bimetallic MnIII–FeII hybrid complexes formed by a functionalized MnIII Anderson polyoxometalate coordinated to FeII: observation of a field-induced …

2015

The synthesis and crystal structure of an Anderson POM functionalized with two 2,6-di(pyrazol-1-yl)-pyridine (1-bpp) ligands are reported (compound 1). High-frequency electron paramagnetic resonance (HF-EPR) and magnetic measurements show that it presents a significant negative axial zero-field splitting and field-induced slow relaxation of magnetization due to the presence of isolated MnIII anisotropic magnetic ions. Complexation of 1 with FeII gives rise to a 2D cationic network formed by Anderson POMs coordinated to two FeII ions through the two tridentate 1-bpp ligands and to other two FeII ions through two oxo ligands in compound 2, and to an anionic polymeric network formed by Anderso…

Materials scienceStereochemistryRelaxation (NMR)General ChemistryCrystal structureLIESSTlaw.inventionCrystallographyMagnetizationlawSpin crossoverPolyoxometalateMaterials ChemistryMoleculeElectron paramagnetic resonanceJournal of Materials Chemistry C
researchProduct

Spin Crossover and Long-Lived Excited States in a Reduced Molecular Ruby.

2020

Abstract The chromium(III) complex [CrIII(ddpd)2]3+ (molecular ruby; ddpd=N,N′‐dimethyl‐N,N′‐dipyridine‐2‐yl‐pyridine‐2,6‐diamine) is reduced to the genuine chromium(II) complex [CrII(ddpd)2]2+ with d4 electron configuration. This reduced molecular ruby represents one of the very few chromium(II) complexes showing spin crossover (SCO). The reversible SCO is gradual with T 1/2 around room temperature. The low‐spin and high‐spin chromium(II) isomers exhibit distinct spectroscopic and structural properties (UV/Vis/NIR, IR, EPR spectroscopies, single‐crystal XRD). Excitation of [CrII(ddpd)2]2+ with UV light at 20 and 290 K generates electronically excited states with microsecond lifetimes. This…

step-scan IR spectroscopychemistry.chemical_element010402 general chemistryPhotochemistry01 natural sciencesCatalysislaw.inventionChromiumSpin crossoverlawSpin CrossoverElectron paramagnetic resonanceexcited states010405 organic chemistryChemistryCommunicationOrganic ChemistryGeneral ChemistryCommunications0104 chemical sciencesMicrosecondExcited stateElectron configurationchromiummagnetic propertiesExcitationChemistry (Weinheim an der Bergstrasse, Germany)
researchProduct

Chromium(iii)-based potential molecular quantum bits with long coherence times

2019

Molecular quantum bits based on copper(ii) or vanadium(iv) have been shown to possess long coherence times on multiple occasions. In contrast, studies in which non-spin-½ ions are employed are relatively scarce. High-spin ions provide additional states that can be used to encode further quantum bits. Furthermore, an optical rather than a microwave readout of molecular quantum bits is highly desirable, because in principle it could allow addressing at the single quantum bit level. The chromium(iii) complex [Cr(ddpd)2]3+ (ddpd = N,N'-dimethyl-N,N'-dipyridine-2-yl-pyridine-2,6-diamine) combines both the large spin (S = 3/2) and optical activity (strong, long lived luminescence). Here we demons…

PhysicsGeneral Physics and Astronomychemistry.chemical_element02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesIonChromiumchemistryQuantum stateQubitPhysical and Theoretical ChemistryAtomic physics0210 nano-technologyLuminescenceQuantumMicrowaveCoherence (physics)Physical Chemistry Chemical Physics
researchProduct

Encapsulation of single-molecule magnets in carbon nanotubes

2011

Next-generation electronic, photonic or spintronic devices will be based on nanoscale functional units, such as quantum dots, isolated spin centres or single-molecule magnets. The key challenge is the coupling of the nanoscale units to the macroscopic world, which is essential for read and write purposes. Carbon nanotubes with one macroscopic and two nanoscopic dimensions provide an excellent means to achieve this coupling. Although the dimensions of nanotube internal cavities are suitable for hosting a wide range of different molecules, to our knowledge, no examples of molecular magnets inserted in nanotubes have been reported to date. Here we report the successful encapsulation of single-…

NanotubeMultidisciplinaryNanostructureMaterials scienceBiochemistry Genetics and Molecular Biology (all)Spintronicsbusiness.industryChemistry (all)General Physics and AstronomyNanotechnologyGeneral ChemistryCarbon nanotubeCondensed Matter::Mesoscopic Systems and Quantum Hall EffectGeneral Biochemistry Genetics and Molecular Biologylaw.inventionCondensed Matter::Materials SciencePhysics and Astronomy (all)lawQuantum dotMagnetPhotonicsbusinessNanoscopic scale
researchProduct

Single Molecule Magnet Features in the Butterfly [Co III 2 Ln III 2 ] Pivalate Family with Alcohol‐Amine Ligands

2021

Inorganic ChemistryLanthanidechemistry.chemical_compoundCrystallographychemistryAb initioSingle-molecule magnetAlcoholAmine ligandsEuropean Journal of Inorganic Chemistry
researchProduct

CCDC 1489635: Experimental Crystal Structure Determination

2017

Related Article: Alejandro V. Funes, Luca Carrella, Yvonne Rechkemmer, Joris van Slageren, Eva Rentschler, Pablo Alborés|2017|Dalton Trans.|46|3400|doi:10.1039/C6DT04713K

Space GroupCrystallographybis(mu-22'-[(2-hydroxyethyl)imino]diethanolato)-bis(mu-methoxo)-tetrakis(mu-pivalato)-bis(pivalato)-di-cobalt(iii)-di-holmium(iii)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1489636: Experimental Crystal Structure Determination

2017

Related Article: Alejandro V. Funes, Luca Carrella, Yvonne Rechkemmer, Joris van Slageren, Eva Rentschler, Pablo Alborés|2017|Dalton Trans.|46|3400|doi:10.1039/C6DT04713K

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinatesbis(mu-22'-[(2-hydroxyethyl)imino]diethanolato)-bis(mu-methoxo)-tetrakis(pivalato)-dipivalato-di-cobalt(iii)-di-ytterbium(iii)
researchProduct

CCDC 1058520: Experimental Crystal Structure Determination

2015

Related Article: Alexandre Abhervé, Mario Palacios-Corella, Juan Modesto Clemente-Juan, Raphael Marx, Petr Neugebauer, Joris van Slageren, Miguel Clemente-León, Eugenio Coronado|2015|J.Mater.Chem.C|3|7936|doi:10.1039/C5TC01089F

Space GroupCrystallographyCrystal SystemCrystal Structurecatena-[bis(mu-N-(13-dioxy-2-(oxymethyl)propan-2-yl)-26-di(1H-pyrazol-1-yl)isonicotinamide)-octakis(mu-oxo)-diaqua-bis(NN-dimethylformamide)-decaoxo-di-iron-manganese-hexa-molybdenum hydroxide NN-dimethylformamide solvate monohydrate]Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1958093: Experimental Crystal Structure Determination

2020

Related Article: Patrick B. Becker, Christoph Förster, Luca M. Carrella, Piet Boden, David Hunger, Joris van Slageren, Markus Gerhards, Eva Rentschler, Katja Heinze|2020|Chem.-Eur.J.|26|7199|doi:10.1002/chem.202001237

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(N2N6-dimethyl-N2N6-bis(pyridin-2-yl)pyridine-26-diamine)-chromium bis(tetrafluoroborate) acetonitrile solvateExperimental 3D Coordinates
researchProduct

CCDC 1058519: Experimental Crystal Structure Determination

2015

Related Article: Alexandre Abhervé, Mario Palacios-Corella, Juan Modesto Clemente-Juan, Raphael Marx, Petr Neugebauer, Joris van Slageren, Miguel Clemente-León, Eugenio Coronado|2015|J.Mater.Chem.C|3|7936|doi:10.1039/C5TC01089F

Space GroupCrystallographyCrystal Systemtris(tetra-n-butylammonium) bis(mu-N-(13-dioxy-2-(oxymethyl)propan-2-yl)-26-di(1H-pyrazol-1-yl)isonicotinamide)-hexakis(mu-oxo)-dodecaoxo-manganese-hexa-molybdenum NN-dimethylacetamide solvate hydrateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1489634: Experimental Crystal Structure Determination

2017

Related Article: Alejandro V. Funes, Luca Carrella, Yvonne Rechkemmer, Joris van Slageren, Eva Rentschler, Pablo Alborés|2017|Dalton Trans.|46|3400|doi:10.1039/C6DT04713K

Space GroupCrystallographyCrystal Systembis(mu-22'-[(2-hydroxyethyl)imino]diethanolato)-bis(mu-methoxo)-tetrakis(mu-pivalato)-bis(pivalato)-di-cobalt(iii)-di-terbium(iii)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1489637: Experimental Crystal Structure Determination

2017

Related Article: Alejandro V. Funes, Luca Carrella, Yvonne Rechkemmer, Joris van Slageren, Eva Rentschler, Pablo Alborés|2017|Dalton Trans.|46|3400|doi:10.1039/C6DT04713K

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(mu-22'-[(2-hydroxyethyl)imino]diethanolato)-bis(mu-methoxo)-tetrakis(mu-pivalato)-bis(pivalato)-di-cobalt(iii)-di-erbium(iii)Experimental 3D Coordinates
researchProduct

CCDC 1489638: Experimental Crystal Structure Determination

2017

Related Article: Alejandro V. Funes, Luca Carrella, Yvonne Rechkemmer, Joris van Slageren, Eva Rentschler, Pablo Alborés|2017|Dalton Trans.|46|3400|doi:10.1039/C6DT04713K

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinatescatena-[bis(mu-22'-[(2-hydroxyethyl)imino]diethanolato)-bis(mu-methoxo)-tetrakis(mu-pivalato)-bis(pivalato)-methanol-di-cobalt(iii)-di-gadolinium(iii)]
researchProduct