0000000001309937

AUTHOR

Guo-bao Huang

Selective recognition of aromatic hydrocarbons by endo-functionalized molecular tubes via C/N-H⋅⋅⋅π interactions

Abstract Molecular recognition of aromatic hydrocarbons by four endo -functionalized molecular tubes has been studied by 1 H NMR spectroscopy, computational methods, and single crystal X-ray crystallography. The binding selectivity is rationalized by invoking shape complementarity and dipole alignment. The non-covalent interactions are proved to predominantly be C/N-H⋅⋅⋅ π interactions.

research product

endo-Functionalized molecular tubes : selective encapsulation of neutral molecules in non-polar media

Four endo-functionalized molecular tubes with urea/thiourea groups in the deep cavities have been synthesized, and their binding ability to neutral molecules studied. Very high binding affinity and selectivity have been achieved, which are rationalized by invoking the shape and electrostatic complementarity and dipole alignment.

research product

Selective recognition of aromatic hydrocarbons by endo-functionalized molecular tubes via C/N-H⋅⋅⋅π interactions

Molecular recognition of aromatic hydrocarbons by four endo-functionalized molecular tubes has been studied by 1H NMR spectroscopy, computational methods, and single crystal X-ray crystallography. The binding selectivity is rationalized by invoking shape complementarity and dipole alignment. The non-covalent interactions are proved to predominantly be C/N-H⋅⋅⋅π interactions. peerReviewed

research product

Bis-urea macrocycles with a deep cavity.

Two configurational isomers of bis-urea macrocycles have been synthesized, and their neutral molecule recognition was studied by X-ray crystallography and (1)H NMR experiments. Cooperative action between the deep cavity and the urea groups and the influence of dipole alignments on molecular recognition are discussed.

research product

CCDC 1532334: Experimental Crystal Structure Determination

Related Article: Guo-Bao Huang, Wei-Er Liu, Arto Valkonen, Huan Yao, Kari Rissanen, Wei Jiang|2018|Chin.Chem.Lett.|29|91|doi:10.1016/j.cclet.2017.07.005

research product