0000000001310717

AUTHOR

G. Peres

Coronal properties of active G-type stars in different evolutionary phases

We report on the analysis of XMM-Newton observations of three G-type stars in very different evolutionary phases: the "weak-line" T Tauri star HD 283572, the Zero Age Main Sequence star EK Dra and the Hertzsprung-gap giant star 31 Corn. The X-ray luminosities of the three stars are all in the range 10(30) - 10(31) erg/s. We compare the Emission Measure Distributions of these bright sources, derived from high-resolution X-ray spectra, as well as the pattern of elemental abundances vs. First Ionization Potential (FIP). The results of our analysis suggest that the coronae of these stars are very similar in terms of dominant coronal magnetic structures, in spite of differences in their evolutio…

research product

Accretion Shocks in Young Stars: the Role of Local Absorption on the X-ray Emission

We investigate the X-ray emission from accretion shocks in classical T Tauri stars, due to the infalling material impacting the stellar surface. Several aspects in both observations and models of the accretion process are still unclear: the observed X-ray luminosity of the post-shock plasma is below the predicted value, the density vs temperature structure of the shocked plasma, with increasing densities at higher temperature, is opposite of what expected from simple accretion shock models. To address these issues we performed numerical magnetohydrodynamic simulations describing the impact of an accretion stream onto the stellar surface and considered the local absorption due to the surroun…

research product

Generation of Knots in a Randomly Pulsed Protostellar Jet: Synthesis of the X-ray Emission

research product

MHD modeling of supernova remnants expanding through inhomogeneous interstellar medium

research product

High Resolution X-ray Spectroscopy of Pre-Main-Sequence Stars: TWA 5 and PZ Tel

We report on the analysis of high resolution X-ray spectra of two pre-main-sequence stars: TWA 5 (observed with XMM-Newton) and PZ Telescopii (observed with Chandra/HETGS). TWA 5 is a classical T Tauri star in the TW Hydrae association while PZ Tel is a rapidly rotating weak-lined T Tauri star in the beta-Pictoris moving group. For both stars we have reconstructed the emission measure distribution and derived the coronal abundances to check for possible patterns of the abundances related to the first ionization potential of the various elements. We have also derived estimates of the plasma density from the analysis of the He-like triplets. We compare the characteristics of our targets with …

research product

Science Objectives for an X-Ray Microcalorimeter Observing the Sun

We present the science case for a broadband X-ray imager with high-resolution spectroscopy, including simulations of X-ray spectral diagnostics of both active regions and solar flares. This is part of a trilogy of white papers discussing science, instrument (Bandler et al. 2010), and missions (Bookbinder et al. 2010) to exploit major advances recently made in transition-edge sensor (TES) detector technology that enable resolution better than 2 eV in an array that can handle high count rates. Combined with a modest X-ray mirror, this instrument would combine arcsecondscale imaging with high-resolution spectra over a field of view sufficiently large for the study of active regions and flares,…

research product

X-raying the interstellar medium: the study of SNR shells at the OAPa

research product

The Sun as a benchmark of flaring activity in stellar coronae

The solar corona is a template to study and understand stellar activity. However the solar corona differs from that of active stars: the Sun has lower X‐ray luminosity, and on average cooler plasma temperatures. Active stellar coronae have a hot peak in their emission measure distribution, EM (T), at 8–20 MK, while the non‐flaring solar corona has a peak at 1–2 MK. In the solar corona significant amounts of plasma at temperature ∼10 MK are observed only during flares.To investigate what is the time‐averaged effect of solar flares we measure the disk‐integrated time‐averaged emission measure, EMF (T), of an unbiased sample of solar flares. To this aim we analyze uninterrupted GOES/XRS light …

research product

XMM-Newton observations of the Upper Scorpius association

research product

Hinode/XRT Diagnostics of Loop Thermal Structure

We investigate possible diagnostics of the thermal structure of coronal loops from Hinode/XRT observations made with several filters. We consider the observation of an active region with five filters. We study various possible combinations of filter data to optimize for sensitivity to thermal structure and for signal enhancement.

research product

The nearest X-ray emitting protostellar jet observed with HST

The HH 154 jet coming from the YSO binary L1551 IRS5 is one of the closest (about 150 pc) astrophysical jet known. It is therefore a unique laboratory for studies of outflow mechanisms and of the shocks forming at the interaction front between the expanding material and the ambient medium. The substructures (knots) observed within the HH 154 jet were imaged in several spectral bands using the Hubble Space Telescope. This allows us to derive a simple characterization of the physical conditions in different structures as well as to measure the proper motion of the knots in the jet, their flux variability and shock emission over a time base of about ten years. These knots in the jet undergo si…

research product

Hot Plasma Detected in Active Regions by HINODE/XRT and SDO/AIA

Multiple ratios of Hinode/XRT filters showed evidence of a minor very hot emission measure component in active regions. Recently also SDO/AIA detected hot plasma in the core of an active region. Here we provide estimates showing that the amount of emission measure of the hot component detected with SDO is consistent with that detected with Hinode/XRT.

research product

Study of the young open cluster IC2391: discovery of X-ray rotational modulation in a supersaturated star

research product

Effects of radiation in accretion regions of classical T Tauri stars

Context. Models and observations indicate that the impact of matter accreting onto the surface of young stars produces regions at the base of accretion columns where optically thin and thick plasma components coexist. Thus, an accurate description of these impacts is necessary to account for the effects of absorption and emission of radiation. Aims. We study the effects of radiation emerging from shock-heated plasma in impact regions on the structure of the pre-shock down-falling material. We investigate whether a significant absorption of radiation occurs and if it leads to a pre-shock heating of the accreting gas. Methods. We developed a radiation hydrodynamics model describing an accreti…

research product

The structure of coronal plasma in active stellar coronae from density measurements

We have analyzed high-resolution X-ray spectra of a sample of 22 active stars observed with the High Energy Transmission Grating Spectrometer (HETGS) on Chandra in order to investigate their coronal plasma density, using the lines of the He-like ions O VII, Mg XI, and Si XIII. Si XII lines in all stars of the sample axe compatible with the low-density limit (i.e. n(e) = 10(30) erg/s); O VII lines yield much lower densities of a few 10(10) cm(-3). Our results indicate that the "hot" and "cool" plasma resides in physically different structures. Our findings imply remarkably compact coronal structures, especially for the hotter (similar to 7 MK) plasma emitting the Mg xi lines characterized by…

research product

Using AMR to Simulate the 3-D Hydrodynamic Interaction of Supernova Shocks with Interstellar Gas Clouds

research product

X-ray Emission Mechanisms in Herbig - Haro objects .

research product

Mhd-Modeling of the Propagation of a Coronal Mass Ejection

Hydrodynamic modeling of the propagation of a density perturbation launched upwards in the solar corona has been shown to explain some features of a Coronal Mass Ejection (CME) observed in detail with the SoHO/UVCS, but left open the questions of the evidence of thermal insulation of the CME and of its large expansion factor. We investigate whether the interaction with the coronal magnetic field is able to explain these aspects, by performing magnetohydrodynamic simulations. We solve the ideal MHD equations for a fully ionized compressible plasma with different assumptions on the ambient magnetic field, using the FLASH code. We include the effect of the directional thermal conduction. Preli…

research product

Hydrodynamic interaction of SNR shocks with thermally conducting, radiative clouds .

research product

Analysis of the XMM-Newton observations of IC443

We analyze for the first time the full set of archive XMM-Newton EPIC observations of the Galactic Supernova Remnant IC 443. We aim at identifying the contribution of the shocked ejecta and interstellar medium and at the describing the physical and chemical properties of the shocked plasma. We also aim at addressing the presence of overionized plasma and its physical origin. We trace the morphology of Si- and S-rich ejecta with unprecedented spatial resolution, by adopting a novel method to produce maps of equivalent width. We describe in detail the method adopted and the results obtained and present preliminary results of a spatially resolved spectral analysis performed on selected regions…

research product

Evidence for past interaction with an asymmetric circumstellar shell in the young SNR Cassiopeia A

Observations of the SNR Cassiopeia A (Cas A) show asymmetries in the reverse shock that cannot be explained by models describing a remnant expanding through a spherically symmetric wind of the progenitor star. We investigate whether a past interaction of Cas A with an asymmetric circumstellar shell can account for the observed asymmetries. We performed 3D MHD simulations that describe the remnant evolution from the SN to its interaction with a circumstellar shell. The initial conditions are provided by a 3D neutrino-driven SN model whose morphology resembles Cas A. We explored the parameter space of the shell, searching for a set of parameters able to produce reverse shock asymmetries at th…

research product

Accretion shock on CTTSs and its X-ray emission

High spectral resolution X-ray observations of classical T Tauri stars (CTTSs) demonstrate the presence of plasma at T~2-3×10^6 K and ne~10^11-10^13 cm-3. Stationary models suggest that this emission is due to shock-heated accreting material. We address this issue by a 1-D hydrodynamic model of the impact of the accretion flow onto a chromosphere of a CTTS with the aim of investigating the stability of accretion shock and the role of the chromosphere. Our simulations include the effects of gravity, radiative losses from optically thin plasma, the thermal conduction and a detailed modeling of the stellar chromosphere. Here we present the results of a simulation based on the parameters of the…

research product

Mass accretion to young stars triggered by flaring activity in circumstellar discs

Young low-mass stars are characterized by ejection of collimated outflows and by circumstellar discs which they interact with through accretion of mass. The accretion builds up the star to its final mass and is also believed to power the mass outflows, which may in turn remove the excess angular momentum from the star-disc system. However, although the process of mass accretion is a critical aspect of star formation, some of its mechanisms are still to be fully understood. A point not considered to date and relevant for the accretion process is the evidence of very energetic and frequent flaring events in these stars. Flares may easily perturb the stability of the discs, thus influencing th…

research product

X-ray properties of NGC 2516 open cluster .

research product

Deep ROSAT-HRI observation of the cD galaxy NGC 1399 in the fornax cluster: Morphology and dynamical status of the X-ray halo

We present the results of a deep (167 ks) observation of the NGC 1399/NGC 1404 field obtained from data collected between 1993 and 1996 with the ROSAT High Resolution Imager. We take advantage of the 5" resolution of the HRI to study in detail the structure of the galactic halo and to relate the results to those obtained at larger scales with poorer resolution instruments. We discuss possible non-equilibrium scenarios that may explain the global halo structure. We also find evidence of interactions between the nuclear radio source and the inner gaseous halo.

research product

Modeling the X-ray emission from jets observed with Chandra

research product

The OAPA/DPSFA: solar physics, instrumental expertise, and the XACT facility

The potential contribution to Solar Orbiter hardware, calibration and testing from the Palermo group (Osservatorio Astronomico di Palermo G.S. Vaiana + Sezione di Astronomia del Dipartimento di Scienze Fisiche ed Astronomiche (DpSFA), Università di Palermo) will be mostly based on the XACT facility and the related expertise. The X-ray Astronomy Calibration and Testing (XACT) facility of Osservatorio Astronomico di Palermo "G.S. Vaiana" (OAPA) includes vacuum systems, sources, monochromators, detectors, mechanical manipulators, clean room, etc. that permits us to perform measurements in the spectrum ranging from visible light to soft X-rays (0.001 - 10 keV). The facility is currently used in…

research product

Sensitivity of the Cherenkov Telescope Array to a dark matter signal from the Galactic centre

Full list of authors: Acharyya, A.; Adam, R.; Adams, C.; Agudo, I.; Aguirre-Santaella, A.; Alfaro, R.; Alfaro, J.; Alispach, C.; Aloisio, R.; Alves Batista, R.; Amati, L.; Ambrosi, G.; Angüner, E. O.; Antonelli, L. A.; Aramo, C.; Araudo, A.; Armstrong, T.; Arqueros, F.; Asano, K.; Ascasíbar, Y. Ashley, M.; Balazs, C.; Ballester, O.; Baquero Larriva, A.; Barbosa Martins, V.; Barkov, M.; Barres de Almeida, U.; Barrio, J. A.; Bastieri, D.; Becerra, J.; Beck, G.; Becker Tjus, J.; Benbow, W.; Benito, M.; Berge, D.; Bernardini, E.; Bernlöhr, K.; Berti, A.; Bertucci, B.; Beshley, V.; Biasuzzi, B.; Biland, A.; Bissaldi, E.; Biteau, J.; Blanch, O.; Blazek, J.; Bocchino, F.; Boisson, C.; Bonneau Arbe…

research product

Flaring activity on the disk of Classical T Tauri Stars: effects on disk stability

Classical T Tauri Stars (CTTSs) are young stellar objects surrounded by a circumstellar disk with which they exchange mass and angular momentum through accretion. Despite this process is a crucial aspect of star formation, some issues are still not clear; in particular how the material loses angular momentum and falls into the star. CTTSs are also characterized by strong X-ray emission. Part of this X-ray emission comes from the heated plasma in the external regions of the stellar corona with temperature between 1 and 100 MK. The plasma heating is presumably due to the strong magnetic field (Feigelson and Montmerle, 1999) in the form of high energetic flares in proximity of the stellar surf…

research product

Application of soil bioindicators for risk assessment, monitoring and soil characterization in contamined soils. Results from the French national "Bioindicators Programme"

EA GenoSol IPM CT?; International audience

research product

Mass accretion to young stars triggered by flaring activity in circumstellar disks

Young low-mass stars are characterized by ejection of collimated outflows and by circumstellar disks which they interact with through accretion of mass. The accretion builds up the star to its final mass and is also believed to power the mass outflows, which may in turn remove the excess angular momentum from the star-disk system. However, although the process of mass accretion is a critical aspect of star formation, some of its mechanisms are still to be fully understood. A point not considered to date and relevant for the accretion process is the evidence of very energetic and frequent flaring events in these stars. Flares may easily perturb the stability of the disks, thus influencing th…

research product

X-ray emission mechanisms in protostellar jets

Prompted by the recent detection of X-ray emission from Herbig-Haro objects, we studied the interaction between a supersonic jet originating from a young stellar object and the ambient medium; our aim is to investigate the mechanisms causing the X-ray emission. Our model takes into account the radiative losses from optically in plasmas and Spitzer's thermal conduction including saturation effects. We explored the parameter space defined by the density contrast between the ambient medium and the jet and by the Mach number, to infer the configurations which can give rise to X-ray emission. From the models, we derived the X-ray emission as it would be observed with Chandra/ACIS-I and XMM-Newto…

research product

Stationary and Flaring Heating Effect on the Coronal Emission Measure .

research product

Temperature and density structure of hot and cool loops derived from the analysis of TRACE data

We address the plasma structuring both across and along the magnetic field in two sets of solar coronal loops, observed with TRACE in the 17lÅ and 195Å passbands. We derive, after proper background removal, the density stratification and the thermal structure of the plasma in the fibrils forming the loops with two techniques: a) filter ratio diagnostic (195 Å/171 Å) and b) modeling intensity profiles along the fibrils with hydrostatic models. We find evidence of a hot fibril (T ∼ 5·106 K), with temperature and density stratification well-described with a typical non-isothermal hydrostatic loop model, and evidence of rather cold fibrils (T ∼ 2 · 105 K), isothermal and probably in dynamic con…

research product

Large Scale Properties of Coronal Heating along the Solar Cycle

We discuss various studies of the global properties of coronal heating. Some of them find power laws tying the X-ray luminosity with the magnetic flux of individual structures, of the whole Sun, and of active solar-type stars. Others are based on methods to model the Sun as an X-ray star. We also briefly discuss solar-like active stars and how the Sun fits in the whole scenario. We use a new model, including all flares, of the Sun as an X-ray star to describe the evolution of the corona along the solar cycle and the implications on the heating of closed coronal structures. We point out that, as activity increases, more heating is released into the confined coronal plasma and such a heating …

research product

XIPE: the X-ray imaging polarimetry explorer

arXiv:1309.6995v1.-- et al.

research product

Size of coronal structures in active stellar coronae from the detection of x-ray resonant scattering

We have analyzed high-resolution X-ray spectra of a large sample of active stars observed with the High Energy Transmission Grating Spectrometer on Chandra in order to investigate the properties of optical thickness of the coronal plasma. The analysis of Lyman series lines arising from hydrogen-like oxygen and neon ions shows in the coronae of the active RS CVn-type binaries II Peg and IM Peg significant decrements in the Ly alpha/Ly beta ratios as compared with theoretical predictions and with the same ratios observed in similar active binaries. We interpret these depletions in terms of resonance scattering of line photons out of the line-of-sight. These observations present the first stro…

research product

XMM spectroscopy of TWA 5

We present results of X-ray spectroscopy for TWA 5, a member of the young TW Hydrae association, observed with XMM-Newton. TWA 5 is a multiple system which shows H{alpha} emission, a signature typical of classical T Tauri stars, but no infrared excess. From this analysis of the RGS and EPIC spectra, we have derived the emission measure distribution vs. temperature of the X-ray emitting plasma, its abundances, and the electron density.

research product

Mapping accretion variability in NGC 2264

Our study aims at characterizing the accretion properties of several hundred members of the star-forming region NGC 2264 (3Myr). We performed a deep u,g,r,i mapping of the cluster with CFHT/MegaCam, and monitored the simultaneous u+r variability of its members over a baseline of two weeks. Stellar parameters are determined homogeneously for about 750 monitored young objects, 40% of which are accreting T Tauri stars. Accretion properties and accretion variability are investigated and characterized from UV excess measurements. Non-accreting members of the cluster define the reference UV emission level over which flux excess is detected and measured. Cone search capability for table J/A+A/570/…

research product

UV variability and accretion in NGC 2264

Photometric variability is a distinctive feature of young stellar objects; exploring variability signatures at different wavelengths provides insight into the physical processes at work in these sources. We explore the variability signatures at ultraviolet (UV) and optical wavelengths for several hundred accreting and non-accreting members of the star-forming region NGC 2264 (~3Myr). Cone search capability for table J/A+A/581/A66/table2 (Median photometry, variability amplitudes, light curve rms, J index, and color slopes for members monitored at CFHT)

research product

XMM-Newton survey of two Upper Scorpius regions

We studied X-ray emission from young stars by analyzing the deep XMM-Newton observations of two regions of the Upper Scorpius association with an age of 5Myr. Based on near infrared and optical photometry we identified 22 Upper Scorpius photometric members among the 224 detected X-ray sources. We derived coronal properties of Upper Scorpius stars by performing X-ray spectral and timing analyses. The study of four strong and isolated stellar flares allowed us to derive the length of the flaring loops. Cone search capability for table J/A+A/459/199/tableb1 (Sources detected in the CTIO observations) Cone search capability for table J/A+A/459/199/tablec1 (Sources detected in the Danish 1.54m o…

research product

Stars associated to Eagle Nebula (M16=NGC6611)

Massive star-forming regions are characterized by intense ionizing fluxes, strong stellar winds and, occasionally, supernovae explosions, all of which have important effects on the surrounding media, on the star-formation process and on the evolution of young stars and their circumstellar disks. We present a multiband study of the massive young cluster NGC 6611 and its parental cloud (the Eagle Nebula) with the aim of studying how OB stars affect the early stellar evolution and the formation of other stars. We search for evidence of triggering of star formation by the massive stars inside NGC 6611 on a large spatial scale (~10 parsec) and ongoing disk photoevaporation in NGC 6611 and how it…

research product

BVI photometry in NGC 6611

VizieR online Data Catalogue associated with article published in journal Astronomy & Astrophysics with title 'Correlation between the spatial distribution of circumstellar disks and massive stars in the open cluster NGC 6611. Compiled catalog and cluster parameters.' (bibcode: 2007A&A...462..245G)

research product

XMM observations of NGC 2516 stars

We present the characteristics of the X-ray variability of stars in the cluster NGC 2516 as derived from XMM-Newton/EPIC/pn data. The X-ray variations on short (hours), medium (months), and long (years) time scales have been explored. We detected 303 distinct X-ray sources by analysing six EPIC/pn observations; 194 of them are members of the cluster. Stars of all spectral types, from the early-types to the late-M dwarfs, were detected. Cone search capability for table J/A+A/456/977/table2 (X-ray and optical properties of NGC 2516 members in the XMM-Newton/EPIC/pn observations having more than 25 counts.)

research product